Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896840749> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2896840749 abstract "Abstract Drilling problems such as stick slip vibration/hole cleaning, pipe failures, loss of circulation, BHA whirl, stuck pipe incidents, excessive torque and drag, low ROP, bit wear, formation damage and borehole instability, and the drilling of highly tortuous wells have only been tackled using physics-based models. Despite the mammoth generation of real-time metadata, there is a tremendous gap between statistical based models and empirical, mathematical, and physical-based models. Data mining techniques have made prominent contributions across a broad spectrum of industries. Its value is widely appreciated in a variety of applications, but its potential has not been fully tapped in the oil and gas industry. This paper presents a review compiling several years of Data Analytics applications in the drilling operations. This review discusses the benefits, deficiencies of the present practices, challenges, and novel applications under development to overcome industry deficiencies. This study encompasses a comprehensive compilation of data mining algorithms and industry applications from a predictive analytics standpoint using supervised and unsupervised advanced analytics algorithms to identify hidden patterns and help mitigate drilling challenges. Traditional data preparation and analysis methods are not sufficiently capable of rapid information extraction and clear visualization of big complicated data sets. Due to the petroleum industry's unfulfilled demand, Machine Learning (ML)-assisted industry workflow in the fields of drilling optimization and real time parameter analysis and mitigation is presented. This paper summarizes data analytics case studies, workflows, and lessons learnt that would allow field personnel, engineers, and management to quickly interpret trends, detect failure patterns in operations, diagnose problems, and execute remedial actions to monitor and safeguard operations. The presence of such a comprehensive workflow can minimize tool failure, save millions in replacement costs and maintenance, NPV, lost production, minimize industry bias, and drive intelligent business decisions. This study will identify areas of improvement and opportunities to mitigate malpractices. Data exploitation via the proposed platform is based on well-established ML and data mining algorithms in computer sciences and statistical literature. This approach enables safe operations and handling of extremely large data bases, hence, facilitating tough decision-making processes." @default.
- W2896840749 created "2018-10-26" @default.
- W2896840749 creator A5038396714 @default.
- W2896840749 creator A5064367718 @default.
- W2896840749 date "2018-10-07" @default.
- W2896840749 modified "2023-10-18" @default.
- W2896840749 title "The Role of Machine Learning in Drilling Operations; A Review" @default.
- W2896840749 cites W1917828803 @default.
- W2896840749 cites W1970125577 @default.
- W2896840749 cites W1975594120 @default.
- W2896840749 cites W1994740121 @default.
- W2896840749 cites W1996377693 @default.
- W2896840749 cites W2000204193 @default.
- W2896840749 cites W2066180822 @default.
- W2896840749 cites W2072081768 @default.
- W2896840749 cites W2090132397 @default.
- W2896840749 cites W2139073224 @default.
- W2896840749 cites W2216978110 @default.
- W2896840749 cites W2411017694 @default.
- W2896840749 cites W2413581040 @default.
- W2896840749 cites W2474253502 @default.
- W2896840749 cites W2482377998 @default.
- W2896840749 cites W2487200295 @default.
- W2896840749 cites W2514078238 @default.
- W2896840749 cites W2519414135 @default.
- W2896840749 cites W2585540576 @default.
- W2896840749 cites W2589806773 @default.
- W2896840749 cites W2604203235 @default.
- W2896840749 cites W2605209161 @default.
- W2896840749 cites W2620683555 @default.
- W2896840749 cites W2751563040 @default.
- W2896840749 cites W2755449951 @default.
- W2896840749 cites W2782924405 @default.
- W2896840749 cites W2784200919 @default.
- W2896840749 cites W2787894218 @default.
- W2896840749 cites W2799471422 @default.
- W2896840749 cites W2897403449 @default.
- W2896840749 cites W2962891531 @default.
- W2896840749 cites W4230077286 @default.
- W2896840749 cites W4244997993 @default.
- W2896840749 cites W878685764 @default.
- W2896840749 doi "https://doi.org/10.2118/191823-18erm-ms" @default.
- W2896840749 hasPublicationYear "2018" @default.
- W2896840749 type Work @default.
- W2896840749 sameAs 2896840749 @default.
- W2896840749 citedByCount "37" @default.
- W2896840749 countsByYear W28968407492018 @default.
- W2896840749 countsByYear W28968407492019 @default.
- W2896840749 countsByYear W28968407492020 @default.
- W2896840749 countsByYear W28968407492021 @default.
- W2896840749 countsByYear W28968407492022 @default.
- W2896840749 countsByYear W28968407492023 @default.
- W2896840749 crossrefType "proceedings-article" @default.
- W2896840749 hasAuthorship W2896840749A5038396714 @default.
- W2896840749 hasAuthorship W2896840749A5064367718 @default.
- W2896840749 hasConcept C119857082 @default.
- W2896840749 hasConcept C124101348 @default.
- W2896840749 hasConcept C127413603 @default.
- W2896840749 hasConcept C154945302 @default.
- W2896840749 hasConcept C175801342 @default.
- W2896840749 hasConcept C177212765 @default.
- W2896840749 hasConcept C2522767166 @default.
- W2896840749 hasConcept C41008148 @default.
- W2896840749 hasConcept C526740375 @default.
- W2896840749 hasConcept C75684735 @default.
- W2896840749 hasConcept C77088390 @default.
- W2896840749 hasConcept C79158427 @default.
- W2896840749 hasConcept C87717796 @default.
- W2896840749 hasConceptScore W2896840749C119857082 @default.
- W2896840749 hasConceptScore W2896840749C124101348 @default.
- W2896840749 hasConceptScore W2896840749C127413603 @default.
- W2896840749 hasConceptScore W2896840749C154945302 @default.
- W2896840749 hasConceptScore W2896840749C175801342 @default.
- W2896840749 hasConceptScore W2896840749C177212765 @default.
- W2896840749 hasConceptScore W2896840749C2522767166 @default.
- W2896840749 hasConceptScore W2896840749C41008148 @default.
- W2896840749 hasConceptScore W2896840749C526740375 @default.
- W2896840749 hasConceptScore W2896840749C75684735 @default.
- W2896840749 hasConceptScore W2896840749C77088390 @default.
- W2896840749 hasConceptScore W2896840749C79158427 @default.
- W2896840749 hasConceptScore W2896840749C87717796 @default.
- W2896840749 hasLocation W28968407491 @default.
- W2896840749 hasOpenAccess W2896840749 @default.
- W2896840749 hasPrimaryLocation W28968407491 @default.
- W2896840749 hasRelatedWork W2337265393 @default.
- W2896840749 hasRelatedWork W2470196046 @default.
- W2896840749 hasRelatedWork W2508885301 @default.
- W2896840749 hasRelatedWork W2509056639 @default.
- W2896840749 hasRelatedWork W2739436898 @default.
- W2896840749 hasRelatedWork W2767450342 @default.
- W2896840749 hasRelatedWork W2777139086 @default.
- W2896840749 hasRelatedWork W2929289283 @default.
- W2896840749 hasRelatedWork W3135981368 @default.
- W2896840749 hasRelatedWork W2551093110 @default.
- W2896840749 isParatext "false" @default.
- W2896840749 isRetracted "false" @default.
- W2896840749 magId "2896840749" @default.
- W2896840749 workType "article" @default.