Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896854717> ?p ?o ?g. }
- W2896854717 endingPage "91" @default.
- W2896854717 startingPage "81" @default.
- W2896854717 abstract "Abstract This study aims to quantitatively examine the variations in effect of road-level factors on crash frequency across different regions. Treating the hierarchical structure existing in the crash data that road entity nested within the geographic region, a hierarchical random parameter model, which allows the coefficients of road-level variables to vary with regions, is proposed. A Poisson lognormal model and a hierarchical random intercept model are also built for the purpose of comparison. A specific roadway facility type, urban two-lane two-way roadway segments in Florida, with crash and road level data including traffic volume, road length, surface condition, and access density for three-year period are used for a case study. The result shows that, in the hierarchical-random parameter model, the local regression coefficients and marginal effects of the road level factors vary over a wide range in the selected counties, which clearly illustrates the non-stationary in the relationships between road level factors and crash frequency across the counties. In regard to the model comparison, the hierarchical random parameter model outperforms the Poisson lognormal model and the hierarchical random intercept model in term of deviance information criterion (DIC). This further confirms the necessity of the use of hierarchical random parameter model in analyzing the crash frequency for road entities in different regions. This study provides a potential in guidance of model construction that considers regional variations (heterogeneities) in safety effects of road-level factors." @default.
- W2896854717 created "2018-10-26" @default.
- W2896854717 creator A5016357519 @default.
- W2896854717 creator A5021257318 @default.
- W2896854717 creator A5031038629 @default.
- W2896854717 creator A5075877965 @default.
- W2896854717 date "2018-12-01" @default.
- W2896854717 modified "2023-09-23" @default.
- W2896854717 title "Investigating varying effect of road-level factors on crash frequency across regions: A Bayesian hierarchical random parameter modeling approach" @default.
- W2896854717 cites W1494346412 @default.
- W2896854717 cites W1894717885 @default.
- W2896854717 cites W1964512993 @default.
- W2896854717 cites W1965126781 @default.
- W2896854717 cites W1976903264 @default.
- W2896854717 cites W1980399291 @default.
- W2896854717 cites W1980514878 @default.
- W2896854717 cites W1985766155 @default.
- W2896854717 cites W1997133953 @default.
- W2896854717 cites W2001423991 @default.
- W2896854717 cites W2008741691 @default.
- W2896854717 cites W2010061675 @default.
- W2896854717 cites W2027349022 @default.
- W2896854717 cites W2034306099 @default.
- W2896854717 cites W2036619968 @default.
- W2896854717 cites W2051228397 @default.
- W2896854717 cites W2052763692 @default.
- W2896854717 cites W2053776921 @default.
- W2896854717 cites W2054427889 @default.
- W2896854717 cites W2057765075 @default.
- W2896854717 cites W2065116668 @default.
- W2896854717 cites W2071002535 @default.
- W2896854717 cites W2080116736 @default.
- W2896854717 cites W2082491861 @default.
- W2896854717 cites W2083873155 @default.
- W2896854717 cites W2088341448 @default.
- W2896854717 cites W2122362215 @default.
- W2896854717 cites W2123264318 @default.
- W2896854717 cites W2132735659 @default.
- W2896854717 cites W2150001599 @default.
- W2896854717 cites W2166291596 @default.
- W2896854717 cites W2190230032 @default.
- W2896854717 cites W2288409435 @default.
- W2896854717 cites W2317786030 @default.
- W2896854717 cites W2326119565 @default.
- W2896854717 cites W2343811890 @default.
- W2896854717 cites W2412483528 @default.
- W2896854717 cites W2462501661 @default.
- W2896854717 cites W2536869046 @default.
- W2896854717 cites W2547561911 @default.
- W2896854717 cites W2578267344 @default.
- W2896854717 cites W2579446145 @default.
- W2896854717 cites W2589206359 @default.
- W2896854717 cites W2600413428 @default.
- W2896854717 cites W2608744881 @default.
- W2896854717 cites W2614954172 @default.
- W2896854717 cites W2621799513 @default.
- W2896854717 cites W2752444931 @default.
- W2896854717 cites W2760702802 @default.
- W2896854717 cites W2761060995 @default.
- W2896854717 cites W2762127995 @default.
- W2896854717 cites W2765174074 @default.
- W2896854717 cites W2766442215 @default.
- W2896854717 cites W2792224364 @default.
- W2896854717 cites W2799987857 @default.
- W2896854717 cites W2800307786 @default.
- W2896854717 cites W2802908984 @default.
- W2896854717 cites W2804528990 @default.
- W2896854717 cites W2810456310 @default.
- W2896854717 cites W4240407278 @default.
- W2896854717 cites W4243387247 @default.
- W2896854717 doi "https://doi.org/10.1016/j.amar.2018.10.002" @default.
- W2896854717 hasPublicationYear "2018" @default.
- W2896854717 type Work @default.
- W2896854717 sameAs 2896854717 @default.
- W2896854717 citedByCount "29" @default.
- W2896854717 countsByYear W28968547172019 @default.
- W2896854717 countsByYear W28968547172020 @default.
- W2896854717 countsByYear W28968547172021 @default.
- W2896854717 countsByYear W28968547172022 @default.
- W2896854717 countsByYear W28968547172023 @default.
- W2896854717 crossrefType "journal-article" @default.
- W2896854717 hasAuthorship W2896854717A5016357519 @default.
- W2896854717 hasAuthorship W2896854717A5021257318 @default.
- W2896854717 hasAuthorship W2896854717A5031038629 @default.
- W2896854717 hasAuthorship W2896854717A5075877965 @default.
- W2896854717 hasConcept C105795698 @default.
- W2896854717 hasConcept C107673813 @default.
- W2896854717 hasConcept C126322002 @default.
- W2896854717 hasConcept C127413603 @default.
- W2896854717 hasConcept C149782125 @default.
- W2896854717 hasConcept C168743327 @default.
- W2896854717 hasConcept C183469790 @default.
- W2896854717 hasConcept C199360897 @default.
- W2896854717 hasConcept C22212356 @default.
- W2896854717 hasConcept C3017944768 @default.
- W2896854717 hasConcept C33923547 @default.
- W2896854717 hasConcept C41008148 @default.
- W2896854717 hasConcept C53059260 @default.