Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896855513> ?p ?o ?g. }
- W2896855513 endingPage "112" @default.
- W2896855513 startingPage "95" @default.
- W2896855513 abstract "There is a growing interest in using so-called dynamic functional connectivity, as the conventional static brain connectivity models are being questioned. Brain network analyses yield complex network data that are difficult to analyze and interpret. To deal with the complex structures, decomposition/factorization techniques that simplify the data are often used. For dynamic network analyses, data simplification is of even greater importance, as dynamic connectivity analyses result in a time series of complex networks. A new challenge that must be faced when using these decomposition/factorization techniques is how to interpret the resulting connectivity patterns. Connectivity patterns resulting from decomposition analyses are often visualized as networks in brain space, in the same way that pairwise correlation networks are visualized. This elevates the risk of conflating connections between nodes that represent correlations between nodes' time series with connections between nodes that result from decomposition analyses. Moreover, dynamic connectivity data may be represented with three-dimensional or four-dimensional (4D) tensors and decomposition results require unique interpretations. Thus, the primary goal of this article is to (1) address the issues that must be considered when interpreting the connectivity patterns from decomposition techniques and (2) show how the data structure and decomposition method interact to affect this interpretation. The outcome of our analyses is summarized as follows. (1) The edge strength in decomposition connectivity patterns represents complex relationships not pairwise interactions between the nodes. (2) The structure of the data significantly alters the connectivity patterns, for example, 4D data result in connectivity patterns with higher regional connections. (3) Orthogonal decomposition methods outperform in feature reduction applications, whereas nonorthogonal decomposition methods are better for mechanistic interpretation." @default.
- W2896855513 created "2018-10-26" @default.
- W2896855513 creator A5056380828 @default.
- W2896855513 creator A5060053159 @default.
- W2896855513 creator A5064243391 @default.
- W2896855513 creator A5080969503 @default.
- W2896855513 date "2019-02-01" @default.
- W2896855513 modified "2023-09-27" @default.
- W2896855513 title "Dynamic Functional Magnetic Resonance Imaging Connectivity Tensor Decomposition: A New Approach to Analyze and Interpret Dynamic Brain Connectivity" @default.
- W2896855513 cites W1886029756 @default.
- W2896855513 cites W1968248619 @default.
- W2896855513 cites W1974403130 @default.
- W2896855513 cites W1974611538 @default.
- W2896855513 cites W1975900269 @default.
- W2896855513 cites W1976623182 @default.
- W2896855513 cites W1989577623 @default.
- W2896855513 cites W1990385855 @default.
- W2896855513 cites W1994219736 @default.
- W2896855513 cites W1999653836 @default.
- W2896855513 cites W2007894316 @default.
- W2896855513 cites W2013912476 @default.
- W2896855513 cites W2014886698 @default.
- W2896855513 cites W2023095826 @default.
- W2896855513 cites W2024165284 @default.
- W2896855513 cites W2037035617 @default.
- W2896855513 cites W2042901969 @default.
- W2896855513 cites W2049748820 @default.
- W2896855513 cites W2068252829 @default.
- W2896855513 cites W2069062751 @default.
- W2896855513 cites W2069593976 @default.
- W2896855513 cites W2069762774 @default.
- W2896855513 cites W2076459794 @default.
- W2896855513 cites W2085561705 @default.
- W2896855513 cites W2089468765 @default.
- W2896855513 cites W2095035319 @default.
- W2896855513 cites W2109469951 @default.
- W2896855513 cites W2113506774 @default.
- W2896855513 cites W2115687188 @default.
- W2896855513 cites W2119741678 @default.
- W2896855513 cites W2128728535 @default.
- W2896855513 cites W2132267493 @default.
- W2896855513 cites W2142566135 @default.
- W2896855513 cites W2151374846 @default.
- W2896855513 cites W2167822639 @default.
- W2896855513 cites W2170702893 @default.
- W2896855513 cites W2180423080 @default.
- W2896855513 cites W2336652848 @default.
- W2896855513 cites W2528907418 @default.
- W2896855513 cites W2563279629 @default.
- W2896855513 cites W2568314250 @default.
- W2896855513 cites W2598767078 @default.
- W2896855513 cites W2621327085 @default.
- W2896855513 cites W2758189514 @default.
- W2896855513 cites W2793875056 @default.
- W2896855513 doi "https://doi.org/10.1089/brain.2018.0605" @default.
- W2896855513 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6390668" @default.
- W2896855513 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30318906" @default.
- W2896855513 hasPublicationYear "2019" @default.
- W2896855513 type Work @default.
- W2896855513 sameAs 2896855513 @default.
- W2896855513 citedByCount "7" @default.
- W2896855513 countsByYear W28968555132019 @default.
- W2896855513 countsByYear W28968555132020 @default.
- W2896855513 countsByYear W28968555132021 @default.
- W2896855513 countsByYear W28968555132022 @default.
- W2896855513 crossrefType "journal-article" @default.
- W2896855513 hasAuthorship W2896855513A5056380828 @default.
- W2896855513 hasAuthorship W2896855513A5060053159 @default.
- W2896855513 hasAuthorship W2896855513A5064243391 @default.
- W2896855513 hasAuthorship W2896855513A5080969503 @default.
- W2896855513 hasBestOaLocation W28968555132 @default.
- W2896855513 hasConcept C121332964 @default.
- W2896855513 hasConcept C124101348 @default.
- W2896855513 hasConcept C124681953 @default.
- W2896855513 hasConcept C136764020 @default.
- W2896855513 hasConcept C154945302 @default.
- W2896855513 hasConcept C158693339 @default.
- W2896855513 hasConcept C169760540 @default.
- W2896855513 hasConcept C184898388 @default.
- W2896855513 hasConcept C18903297 @default.
- W2896855513 hasConcept C2779097318 @default.
- W2896855513 hasConcept C3018011982 @default.
- W2896855513 hasConcept C32946077 @default.
- W2896855513 hasConcept C34947359 @default.
- W2896855513 hasConcept C41008148 @default.
- W2896855513 hasConcept C42355184 @default.
- W2896855513 hasConcept C45715564 @default.
- W2896855513 hasConcept C62520636 @default.
- W2896855513 hasConcept C86803240 @default.
- W2896855513 hasConceptScore W2896855513C121332964 @default.
- W2896855513 hasConceptScore W2896855513C124101348 @default.
- W2896855513 hasConceptScore W2896855513C124681953 @default.
- W2896855513 hasConceptScore W2896855513C136764020 @default.
- W2896855513 hasConceptScore W2896855513C154945302 @default.
- W2896855513 hasConceptScore W2896855513C158693339 @default.
- W2896855513 hasConceptScore W2896855513C169760540 @default.
- W2896855513 hasConceptScore W2896855513C184898388 @default.
- W2896855513 hasConceptScore W2896855513C18903297 @default.