Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896862063> ?p ?o ?g. }
- W2896862063 abstract "Parareal and multigrid reduction in time (MGRiT) are two of the most popular parallel-in-time methods. The idea is to treat time integration in a parallel context by using a multigrid method in time. If $Phi$ is a (fine-grid) time-stepping scheme, let $Psi$ denote a time-stepping scheme chosen to approximate $k$ steps of $Phi$, $kgeq 1$. In particular, $Psi$ defines the coarse-grid correction, and evaluating $Psi$ should be (significantly) cheaper than evaluating $Phi^k$. A number of papers have studied the convergence of Parareal and MGRiT. However, there have yet to be general conditions developed on the convergence of Parareal or MGRiT that answer simple questions such as, (i) for a given $Phi$ and $k$, what is the best $Psi$, or (ii) can Parareal/MGRiT converge for my problem? This work derives necessary and sufficient conditions for the convergence of Parareal and MGRiT applied to linear problems, along with tight two-level convergence bounds. Results rest on the introduction of a temporal approximation property (TAP) that indicates how $Phi^k$ must approximate the action of $Psi$ on different vectors. Loosely, for unitarily diagonalizable operators, the TAP indicates that fine-grid and coarse-grid time integration schemes must integrate geometrically smooth spatial components similarly, and less so for geometrically high frequency. In the (non-unitarily) diagonalizable setting, the conditioning of each eigenvector, $mathbf{v}_i$, must also be reflected in how well $Psimathbf{v}_i simPhi^kmathbf{v}_i$. In general, worst-case convergence bounds are exactly given by $min varphi < 1$ such that an inequality along the lines of $|(Psi-Phi^k)mathbf{v}| leqvarphi |(I - Psi)mathbf{v}|$ holds for all $mathbf{v}$. Such inequalities are formalized as different realizations of the TAP, and form the basis for convergence of MGRiT and Parareal." @default.
- W2896862063 created "2018-10-26" @default.
- W2896862063 creator A5013739420 @default.
- W2896862063 date "2018-10-16" @default.
- W2896862063 modified "2023-09-27" @default.
- W2896862063 title "Necessary Conditions and Tight Two-level Convergence Bounds for Parareal and Multigrid Reduction in Time." @default.
- W2896862063 cites W1590473342 @default.
- W2896862063 cites W1796252776 @default.
- W2896862063 cites W186974785 @default.
- W2896862063 cites W1988976163 @default.
- W2896862063 cites W1991531168 @default.
- W2896862063 cites W2011218011 @default.
- W2896862063 cites W2012630580 @default.
- W2896862063 cites W2040549599 @default.
- W2896862063 cites W2053866493 @default.
- W2896862063 cites W2058478885 @default.
- W2896862063 cites W2065884217 @default.
- W2896862063 cites W2078687549 @default.
- W2896862063 cites W2105970221 @default.
- W2896862063 cites W2142385993 @default.
- W2896862063 cites W2150635106 @default.
- W2896862063 cites W2151657302 @default.
- W2896862063 cites W2167295697 @default.
- W2896862063 cites W2753707213 @default.
- W2896862063 cites W2765729611 @default.
- W2896862063 cites W2790006186 @default.
- W2896862063 cites W2795471203 @default.
- W2896862063 cites W2811245070 @default.
- W2896862063 cites W2887972262 @default.
- W2896862063 cites W2963109303 @default.
- W2896862063 cites W2963524234 @default.
- W2896862063 cites W2982352474 @default.
- W2896862063 hasPublicationYear "2018" @default.
- W2896862063 type Work @default.
- W2896862063 sameAs 2896862063 @default.
- W2896862063 citedByCount "2" @default.
- W2896862063 countsByYear W28968620632019 @default.
- W2896862063 crossrefType "posted-content" @default.
- W2896862063 hasAuthorship W2896862063A5013739420 @default.
- W2896862063 hasConcept C111335779 @default.
- W2896862063 hasConcept C114614502 @default.
- W2896862063 hasConcept C121332964 @default.
- W2896862063 hasConcept C134306372 @default.
- W2896862063 hasConcept C137119250 @default.
- W2896862063 hasConcept C151730666 @default.
- W2896862063 hasConcept C158693339 @default.
- W2896862063 hasConcept C162324750 @default.
- W2896862063 hasConcept C187691185 @default.
- W2896862063 hasConcept C2524010 @default.
- W2896862063 hasConcept C2777303404 @default.
- W2896862063 hasConcept C2779343474 @default.
- W2896862063 hasConcept C28826006 @default.
- W2896862063 hasConcept C30072841 @default.
- W2896862063 hasConcept C33923547 @default.
- W2896862063 hasConcept C50522688 @default.
- W2896862063 hasConcept C54848796 @default.
- W2896862063 hasConcept C62520636 @default.
- W2896862063 hasConcept C78045399 @default.
- W2896862063 hasConcept C86803240 @default.
- W2896862063 hasConceptScore W2896862063C111335779 @default.
- W2896862063 hasConceptScore W2896862063C114614502 @default.
- W2896862063 hasConceptScore W2896862063C121332964 @default.
- W2896862063 hasConceptScore W2896862063C134306372 @default.
- W2896862063 hasConceptScore W2896862063C137119250 @default.
- W2896862063 hasConceptScore W2896862063C151730666 @default.
- W2896862063 hasConceptScore W2896862063C158693339 @default.
- W2896862063 hasConceptScore W2896862063C162324750 @default.
- W2896862063 hasConceptScore W2896862063C187691185 @default.
- W2896862063 hasConceptScore W2896862063C2524010 @default.
- W2896862063 hasConceptScore W2896862063C2777303404 @default.
- W2896862063 hasConceptScore W2896862063C2779343474 @default.
- W2896862063 hasConceptScore W2896862063C28826006 @default.
- W2896862063 hasConceptScore W2896862063C30072841 @default.
- W2896862063 hasConceptScore W2896862063C33923547 @default.
- W2896862063 hasConceptScore W2896862063C50522688 @default.
- W2896862063 hasConceptScore W2896862063C54848796 @default.
- W2896862063 hasConceptScore W2896862063C62520636 @default.
- W2896862063 hasConceptScore W2896862063C78045399 @default.
- W2896862063 hasConceptScore W2896862063C86803240 @default.
- W2896862063 hasLocation W28968620631 @default.
- W2896862063 hasOpenAccess W2896862063 @default.
- W2896862063 hasPrimaryLocation W28968620631 @default.
- W2896862063 hasRelatedWork W1666065287 @default.
- W2896862063 hasRelatedWork W1993283172 @default.
- W2896862063 hasRelatedWork W1996965788 @default.
- W2896862063 hasRelatedWork W2012547784 @default.
- W2896862063 hasRelatedWork W2014513111 @default.
- W2896862063 hasRelatedWork W2019210935 @default.
- W2896862063 hasRelatedWork W2128328239 @default.
- W2896862063 hasRelatedWork W2466537650 @default.
- W2896862063 hasRelatedWork W2479092355 @default.
- W2896862063 hasRelatedWork W2480565432 @default.
- W2896862063 hasRelatedWork W2601936882 @default.
- W2896862063 hasRelatedWork W2742768303 @default.
- W2896862063 hasRelatedWork W2951434312 @default.
- W2896862063 hasRelatedWork W2989503034 @default.
- W2896862063 hasRelatedWork W3035492486 @default.
- W2896862063 hasRelatedWork W3090003755 @default.
- W2896862063 hasRelatedWork W3155765245 @default.
- W2896862063 hasRelatedWork W5075840 @default.