Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896875388> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2896875388 abstract "Given a Riemannian space $N$ of dimension $n$ and a field $D$ of symmetric endomorphisms on $N$, we define the extension $M$ of $N$ by $D$ to be the Riemannian manifold of dimension $n+1$ obtained from $N$ by a construction similar to extending a Lie group by a derivation of its Lie algebra. We find the conditions on $N$ and $D$ which imply that the extension $M$ is Einstein. In particular, we show that in this case, $D$ has constant eigenvalues; moreover, they are all integer (up to scaling) if $det D ne 0$. They must satisfy certain arithmetic relations which imply that there are only finitely many eigenvalue types of $D$ in every dimension (a similar result is known for Einstein solvmanifolds). We give the characterisation of Einstein extensions for particular eigenvalue types of $D$, including the complete classification for the case when $D$ has two eigenvalues, one of which is multiplicity free. In the most interesting case, the extension is obtained, by an explicit procedure, from an almost K{a}hler Ricci flat manifold (in particular, from a Calabi-Yau manifold). We also show that all Einstein extensions of dimension four are Einstein solvmanifolds. A similar result holds valid in the case when $N$ is a Lie group with a left-invariant metric, under some additional assumptions." @default.
- W2896875388 created "2018-10-26" @default.
- W2896875388 creator A5030187954 @default.
- W2896875388 creator A5045190861 @default.
- W2896875388 date "2018-10-21" @default.
- W2896875388 modified "2023-09-23" @default.
- W2896875388 title "Einstein extensions of Riemannian manifolds." @default.
- W2896875388 cites W1968532244 @default.
- W2896875388 cites W2003454143 @default.
- W2896875388 cites W2024358806 @default.
- W2896875388 cites W2031107934 @default.
- W2896875388 cites W2049905706 @default.
- W2896875388 cites W2104133946 @default.
- W2896875388 cites W3121872535 @default.
- W2896875388 hasPublicationYear "2018" @default.
- W2896875388 type Work @default.
- W2896875388 sameAs 2896875388 @default.
- W2896875388 citedByCount "0" @default.
- W2896875388 crossrefType "posted-content" @default.
- W2896875388 hasAuthorship W2896875388A5030187954 @default.
- W2896875388 hasAuthorship W2896875388A5045190861 @default.
- W2896875388 hasConcept C116858840 @default.
- W2896875388 hasConcept C12089564 @default.
- W2896875388 hasConcept C127413603 @default.
- W2896875388 hasConcept C146846114 @default.
- W2896875388 hasConcept C187915474 @default.
- W2896875388 hasConcept C195065555 @default.
- W2896875388 hasConcept C202444582 @default.
- W2896875388 hasConcept C2524010 @default.
- W2896875388 hasConcept C33676613 @default.
- W2896875388 hasConcept C33923547 @default.
- W2896875388 hasConcept C37914503 @default.
- W2896875388 hasConcept C51568863 @default.
- W2896875388 hasConcept C529865628 @default.
- W2896875388 hasConcept C78519656 @default.
- W2896875388 hasConceptScore W2896875388C116858840 @default.
- W2896875388 hasConceptScore W2896875388C12089564 @default.
- W2896875388 hasConceptScore W2896875388C127413603 @default.
- W2896875388 hasConceptScore W2896875388C146846114 @default.
- W2896875388 hasConceptScore W2896875388C187915474 @default.
- W2896875388 hasConceptScore W2896875388C195065555 @default.
- W2896875388 hasConceptScore W2896875388C202444582 @default.
- W2896875388 hasConceptScore W2896875388C2524010 @default.
- W2896875388 hasConceptScore W2896875388C33676613 @default.
- W2896875388 hasConceptScore W2896875388C33923547 @default.
- W2896875388 hasConceptScore W2896875388C37914503 @default.
- W2896875388 hasConceptScore W2896875388C51568863 @default.
- W2896875388 hasConceptScore W2896875388C529865628 @default.
- W2896875388 hasConceptScore W2896875388C78519656 @default.
- W2896875388 hasOpenAccess W2896875388 @default.
- W2896875388 hasRelatedWork W1552595747 @default.
- W2896875388 hasRelatedWork W1997955443 @default.
- W2896875388 hasRelatedWork W2024655267 @default.
- W2896875388 hasRelatedWork W2028266102 @default.
- W2896875388 hasRelatedWork W2045312437 @default.
- W2896875388 hasRelatedWork W2070582798 @default.
- W2896875388 hasRelatedWork W2094466156 @default.
- W2896875388 hasRelatedWork W2123627225 @default.
- W2896875388 hasRelatedWork W2161692912 @default.
- W2896875388 hasRelatedWork W2240246958 @default.
- W2896875388 hasRelatedWork W2615524737 @default.
- W2896875388 hasRelatedWork W2949227412 @default.
- W2896875388 hasRelatedWork W2949492505 @default.
- W2896875388 hasRelatedWork W2949847246 @default.
- W2896875388 hasRelatedWork W2951528598 @default.
- W2896875388 hasRelatedWork W3098449803 @default.
- W2896875388 hasRelatedWork W3099061630 @default.
- W2896875388 hasRelatedWork W3102785516 @default.
- W2896875388 hasRelatedWork W3103610913 @default.
- W2896875388 hasRelatedWork W75883774 @default.
- W2896875388 isParatext "false" @default.
- W2896875388 isRetracted "false" @default.
- W2896875388 magId "2896875388" @default.
- W2896875388 workType "article" @default.