Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896878360> ?p ?o ?g. }
- W2896878360 endingPage "410" @default.
- W2896878360 startingPage "369" @default.
- W2896878360 abstract "High-throughput and high-content screening campaigns have resulted in the creation of large chemogenomic matrices. These matrices form the training data which is used to build ligand–target interaction models for pharmacological and chemical biology research. While academic, government, and industrial efforts continuously add to the ligand–target data pairs available for modeling, major research efforts are devoted to improving machine learning techniques to cope with the sparseness, heterogeneity, and size of available datasets as well as inherent noise and bias. This “race of arms” has led to the creation of algorithms to generate highly complex models with high prediction performance at the cost of training efficiency as well as interpretability. In contrast, recent studies have challenged the necessity for “big data” in chemogenomic modeling and found that models built on larger numbers of examples do not necessarily result in better predictive abilities. Automated adaptive selection of the training data (ligand–target instances) used for model creation can result in considerably smaller training sets that retain prediction performance on par with training using hundreds of thousands of data points. In this chapter, we describe the protocols used for one such iterative chemogenomic selection technique, including model construction and update as well as possible techniques for evaluations of constructed models and analysis of the iterative model construction." @default.
- W2896878360 created "2018-10-26" @default.
- W2896878360 creator A5020392456 @default.
- W2896878360 creator A5089294965 @default.
- W2896878360 date "2018-01-01" @default.
- W2896878360 modified "2023-09-23" @default.
- W2896878360 title "Selection of Informative Examples in Chemogenomic Datasets" @default.
- W2896878360 cites W1497209257 @default.
- W2896878360 cites W1510073064 @default.
- W2896878360 cites W1970651561 @default.
- W2896878360 cites W1973101413 @default.
- W2896878360 cites W1973253766 @default.
- W2896878360 cites W1975875968 @default.
- W2896878360 cites W1982131304 @default.
- W2896878360 cites W1982734154 @default.
- W2896878360 cites W1984673823 @default.
- W2896878360 cites W1985372952 @default.
- W2896878360 cites W1988195734 @default.
- W2896878360 cites W1991238353 @default.
- W2896878360 cites W1993038297 @default.
- W2896878360 cites W1995530068 @default.
- W2896878360 cites W1998723350 @default.
- W2896878360 cites W2001619934 @default.
- W2896878360 cites W2010865240 @default.
- W2896878360 cites W2024908724 @default.
- W2896878360 cites W2034475831 @default.
- W2896878360 cites W2035347370 @default.
- W2896878360 cites W2041392558 @default.
- W2896878360 cites W2043509228 @default.
- W2896878360 cites W2052700843 @default.
- W2896878360 cites W2057552436 @default.
- W2896878360 cites W2058812423 @default.
- W2896878360 cites W2060581674 @default.
- W2896878360 cites W2062848325 @default.
- W2896878360 cites W2080642200 @default.
- W2896878360 cites W2081741745 @default.
- W2896878360 cites W2085312881 @default.
- W2896878360 cites W2086966407 @default.
- W2896878360 cites W2087953585 @default.
- W2896878360 cites W2088970363 @default.
- W2896878360 cites W2092631328 @default.
- W2896878360 cites W2097706568 @default.
- W2896878360 cites W2097745317 @default.
- W2896878360 cites W2101664201 @default.
- W2896878360 cites W2107432340 @default.
- W2896878360 cites W2111246944 @default.
- W2896878360 cites W2111922458 @default.
- W2896878360 cites W2114850508 @default.
- W2896878360 cites W2118339791 @default.
- W2896878360 cites W2118978333 @default.
- W2896878360 cites W2121394390 @default.
- W2896878360 cites W2121950477 @default.
- W2896878360 cites W2129434099 @default.
- W2896878360 cites W2131822674 @default.
- W2896878360 cites W2138011870 @default.
- W2896878360 cites W2148972970 @default.
- W2896878360 cites W2151639574 @default.
- W2896878360 cites W2152761785 @default.
- W2896878360 cites W2153635508 @default.
- W2896878360 cites W2159229889 @default.
- W2896878360 cites W2159767366 @default.
- W2896878360 cites W2162730543 @default.
- W2896878360 cites W2166410137 @default.
- W2896878360 cites W2213443318 @default.
- W2896878360 cites W2228999631 @default.
- W2896878360 cites W2293879964 @default.
- W2896878360 cites W2293886700 @default.
- W2896878360 cites W2318069604 @default.
- W2896878360 cites W2334820078 @default.
- W2896878360 cites W2489988882 @default.
- W2896878360 cites W2493157521 @default.
- W2896878360 cites W2591883888 @default.
- W2896878360 cites W2739609124 @default.
- W2896878360 cites W2911964244 @default.
- W2896878360 cites W2919115771 @default.
- W2896878360 cites W4206723194 @default.
- W2896878360 cites W4234621662 @default.
- W2896878360 cites W4237511345 @default.
- W2896878360 cites W4239510810 @default.
- W2896878360 cites W4254268221 @default.
- W2896878360 doi "https://doi.org/10.1007/978-1-4939-8639-2_13" @default.
- W2896878360 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30334214" @default.
- W2896878360 hasPublicationYear "2018" @default.
- W2896878360 type Work @default.
- W2896878360 sameAs 2896878360 @default.
- W2896878360 citedByCount "8" @default.
- W2896878360 countsByYear W28968783602019 @default.
- W2896878360 countsByYear W28968783602020 @default.
- W2896878360 countsByYear W28968783602021 @default.
- W2896878360 countsByYear W28968783602023 @default.
- W2896878360 crossrefType "book-chapter" @default.
- W2896878360 hasAuthorship W2896878360A5020392456 @default.
- W2896878360 hasAuthorship W2896878360A5089294965 @default.
- W2896878360 hasConcept C119857082 @default.
- W2896878360 hasConcept C124101348 @default.
- W2896878360 hasConcept C154945302 @default.
- W2896878360 hasConcept C2781067378 @default.
- W2896878360 hasConcept C41008148 @default.