Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896884818> ?p ?o ?g. }
- W2896884818 endingPage "1485" @default.
- W2896884818 startingPage "1485" @default.
- W2896884818 abstract "Urban flood control requires real-time and spatially detailed information regarding the waterlogging depth over large areas, but such information cannot be effectively obtained by the existing methods. Video supervision equipment, which is readily available in most cities, can record urban waterlogging processes in video form. These video data could be a valuable data source for waterlogging depth extraction. The present paper is aimed at demonstrating a new approach to extract urban waterlogging depths from video images based on transfer learning and lasso regression. First, a transfer learning model is used to extract feature vectors from a video image set of urban waterlogging. Second, a lasso regression model is trained with these feature vectors and employed to calculate the waterlogging depth. Two case studies in China were used to evaluate the proposed method, and the experimental results illustrate the effectiveness of the method. This method can be applied to video images from widespread cameras in cities, so that a powerful urban waterlogging monitoring network can be formed." @default.
- W2896884818 created "2018-10-26" @default.
- W2896884818 creator A5035906229 @default.
- W2896884818 creator A5052976924 @default.
- W2896884818 creator A5089681682 @default.
- W2896884818 creator A5090537271 @default.
- W2896884818 date "2018-10-21" @default.
- W2896884818 modified "2023-10-17" @default.
- W2896884818 title "Extraction of Urban Waterlogging Depth from Video Images Using Transfer Learning" @default.
- W2896884818 cites W1901975556 @default.
- W2896884818 cites W1989379580 @default.
- W2896884818 cites W1990551348 @default.
- W2896884818 cites W2051403129 @default.
- W2896884818 cites W2063978378 @default.
- W2896884818 cites W2066665291 @default.
- W2896884818 cites W2098676252 @default.
- W2896884818 cites W2102654825 @default.
- W2896884818 cites W2109633030 @default.
- W2896884818 cites W2119862467 @default.
- W2896884818 cites W2121885753 @default.
- W2896884818 cites W2165698076 @default.
- W2896884818 cites W2168480769 @default.
- W2896884818 cites W2192455847 @default.
- W2896884818 cites W2214653699 @default.
- W2896884818 cites W2510581205 @default.
- W2896884818 cites W2513506629 @default.
- W2896884818 cites W2528564228 @default.
- W2896884818 cites W2597243853 @default.
- W2896884818 cites W2668276107 @default.
- W2896884818 cites W2732516007 @default.
- W2896884818 cites W2756191265 @default.
- W2896884818 cites W2767968188 @default.
- W2896884818 cites W2786982483 @default.
- W2896884818 cites W2791721779 @default.
- W2896884818 cites W2807638832 @default.
- W2896884818 cites W2890404982 @default.
- W2896884818 cites W2894164104 @default.
- W2896884818 cites W2949648625 @default.
- W2896884818 cites W4254673179 @default.
- W2896884818 doi "https://doi.org/10.3390/w10101485" @default.
- W2896884818 hasPublicationYear "2018" @default.
- W2896884818 type Work @default.
- W2896884818 sameAs 2896884818 @default.
- W2896884818 citedByCount "18" @default.
- W2896884818 countsByYear W28968848182019 @default.
- W2896884818 countsByYear W28968848182020 @default.
- W2896884818 countsByYear W28968848182021 @default.
- W2896884818 countsByYear W28968848182022 @default.
- W2896884818 countsByYear W28968848182023 @default.
- W2896884818 crossrefType "journal-article" @default.
- W2896884818 hasAuthorship W2896884818A5035906229 @default.
- W2896884818 hasAuthorship W2896884818A5052976924 @default.
- W2896884818 hasAuthorship W2896884818A5089681682 @default.
- W2896884818 hasAuthorship W2896884818A5090537271 @default.
- W2896884818 hasBestOaLocation W28968848181 @default.
- W2896884818 hasConcept C124101348 @default.
- W2896884818 hasConcept C138885662 @default.
- W2896884818 hasConcept C150899416 @default.
- W2896884818 hasConcept C153180895 @default.
- W2896884818 hasConcept C154945302 @default.
- W2896884818 hasConcept C166957645 @default.
- W2896884818 hasConcept C177264268 @default.
- W2896884818 hasConcept C18903297 @default.
- W2896884818 hasConcept C199360897 @default.
- W2896884818 hasConcept C202583358 @default.
- W2896884818 hasConcept C205649164 @default.
- W2896884818 hasConcept C2776401178 @default.
- W2896884818 hasConcept C31972630 @default.
- W2896884818 hasConcept C41008148 @default.
- W2896884818 hasConcept C41895202 @default.
- W2896884818 hasConcept C52622490 @default.
- W2896884818 hasConcept C58489278 @default.
- W2896884818 hasConcept C62649853 @default.
- W2896884818 hasConcept C67715294 @default.
- W2896884818 hasConcept C74256435 @default.
- W2896884818 hasConcept C86803240 @default.
- W2896884818 hasConceptScore W2896884818C124101348 @default.
- W2896884818 hasConceptScore W2896884818C138885662 @default.
- W2896884818 hasConceptScore W2896884818C150899416 @default.
- W2896884818 hasConceptScore W2896884818C153180895 @default.
- W2896884818 hasConceptScore W2896884818C154945302 @default.
- W2896884818 hasConceptScore W2896884818C166957645 @default.
- W2896884818 hasConceptScore W2896884818C177264268 @default.
- W2896884818 hasConceptScore W2896884818C18903297 @default.
- W2896884818 hasConceptScore W2896884818C199360897 @default.
- W2896884818 hasConceptScore W2896884818C202583358 @default.
- W2896884818 hasConceptScore W2896884818C205649164 @default.
- W2896884818 hasConceptScore W2896884818C2776401178 @default.
- W2896884818 hasConceptScore W2896884818C31972630 @default.
- W2896884818 hasConceptScore W2896884818C41008148 @default.
- W2896884818 hasConceptScore W2896884818C41895202 @default.
- W2896884818 hasConceptScore W2896884818C52622490 @default.
- W2896884818 hasConceptScore W2896884818C58489278 @default.
- W2896884818 hasConceptScore W2896884818C62649853 @default.
- W2896884818 hasConceptScore W2896884818C67715294 @default.
- W2896884818 hasConceptScore W2896884818C74256435 @default.
- W2896884818 hasConceptScore W2896884818C86803240 @default.
- W2896884818 hasFunder F4320321001 @default.