Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896885247> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2896885247 abstract "The extreme learning machine (ELM) provides efficient unified solutions for generalized single hidden layer feed-forward neural networks. Hierarchical learning based on ELM has now attracted lots of interests. This paper presents a hierarchical pruning discriminative ELM (H-PDELM) for feature learning and classification. The ELM pruning auto-encoder (ELM-PAE) is developed for unsupervised feature learning by promoting the output weights matrix to be row-sparse based on l2, 1-norm regularization. ELM-PAE can naturally distinguish and prune useless neurons in hidden layer to determine the structure of AE. Besides, we learn a flexible output weights matrix for supervised feature classification by relaxing the strict regression label matrix of ELM into a slack one for better generalization performance. H-PDELM performs layer-wise unsupervised feature learning using ELM-PAE, and conducts decision making by the flexible output weights matrix. The network of H-PDELM is compact with good generalization ability. Preliminary experiments on visual dataset show its effectiveness." @default.
- W2896885247 created "2018-10-26" @default.
- W2896885247 creator A5009251831 @default.
- W2896885247 creator A5044075152 @default.
- W2896885247 creator A5082164874 @default.
- W2896885247 date "2018-10-17" @default.
- W2896885247 modified "2023-09-25" @default.
- W2896885247 title "Hierarchical Pruning Discriminative Extreme Learning Machine" @default.
- W2896885247 cites W2026131661 @default.
- W2896885247 cites W2042184006 @default.
- W2896885247 cites W2059477850 @default.
- W2896885247 cites W2111072639 @default.
- W2896885247 cites W2121971770 @default.
- W2896885247 cites W2122040390 @default.
- W2896885247 cites W2141695047 @default.
- W2896885247 cites W2301541953 @default.
- W2896885247 cites W2408701322 @default.
- W2896885247 cites W2517537544 @default.
- W2896885247 cites W2613426450 @default.
- W2896885247 cites W2919115771 @default.
- W2896885247 doi "https://doi.org/10.1007/978-3-030-01520-6_21" @default.
- W2896885247 hasPublicationYear "2018" @default.
- W2896885247 type Work @default.
- W2896885247 sameAs 2896885247 @default.
- W2896885247 citedByCount "0" @default.
- W2896885247 crossrefType "book-chapter" @default.
- W2896885247 hasAuthorship W2896885247A5009251831 @default.
- W2896885247 hasAuthorship W2896885247A5044075152 @default.
- W2896885247 hasAuthorship W2896885247A5082164874 @default.
- W2896885247 hasConcept C108010975 @default.
- W2896885247 hasConcept C119857082 @default.
- W2896885247 hasConcept C134306372 @default.
- W2896885247 hasConcept C138885662 @default.
- W2896885247 hasConcept C153180895 @default.
- W2896885247 hasConcept C154945302 @default.
- W2896885247 hasConcept C177148314 @default.
- W2896885247 hasConcept C2776135515 @default.
- W2896885247 hasConcept C2776401178 @default.
- W2896885247 hasConcept C2780150128 @default.
- W2896885247 hasConcept C33923547 @default.
- W2896885247 hasConcept C41008148 @default.
- W2896885247 hasConcept C41895202 @default.
- W2896885247 hasConcept C50644808 @default.
- W2896885247 hasConcept C59404180 @default.
- W2896885247 hasConcept C6557445 @default.
- W2896885247 hasConcept C86803240 @default.
- W2896885247 hasConcept C97931131 @default.
- W2896885247 hasConceptScore W2896885247C108010975 @default.
- W2896885247 hasConceptScore W2896885247C119857082 @default.
- W2896885247 hasConceptScore W2896885247C134306372 @default.
- W2896885247 hasConceptScore W2896885247C138885662 @default.
- W2896885247 hasConceptScore W2896885247C153180895 @default.
- W2896885247 hasConceptScore W2896885247C154945302 @default.
- W2896885247 hasConceptScore W2896885247C177148314 @default.
- W2896885247 hasConceptScore W2896885247C2776135515 @default.
- W2896885247 hasConceptScore W2896885247C2776401178 @default.
- W2896885247 hasConceptScore W2896885247C2780150128 @default.
- W2896885247 hasConceptScore W2896885247C33923547 @default.
- W2896885247 hasConceptScore W2896885247C41008148 @default.
- W2896885247 hasConceptScore W2896885247C41895202 @default.
- W2896885247 hasConceptScore W2896885247C50644808 @default.
- W2896885247 hasConceptScore W2896885247C59404180 @default.
- W2896885247 hasConceptScore W2896885247C6557445 @default.
- W2896885247 hasConceptScore W2896885247C86803240 @default.
- W2896885247 hasConceptScore W2896885247C97931131 @default.
- W2896885247 hasLocation W28968852471 @default.
- W2896885247 hasOpenAccess W2896885247 @default.
- W2896885247 hasPrimaryLocation W28968852471 @default.
- W2896885247 hasRelatedWork W1486171644 @default.
- W2896885247 hasRelatedWork W2057755039 @default.
- W2896885247 hasRelatedWork W2061273563 @default.
- W2896885247 hasRelatedWork W2201824366 @default.
- W2896885247 hasRelatedWork W2619127353 @default.
- W2896885247 hasRelatedWork W2754314225 @default.
- W2896885247 hasRelatedWork W2800482120 @default.
- W2896885247 hasRelatedWork W2970216048 @default.
- W2896885247 hasRelatedWork W3021189487 @default.
- W2896885247 hasRelatedWork W3128999341 @default.
- W2896885247 isParatext "false" @default.
- W2896885247 isRetracted "false" @default.
- W2896885247 magId "2896885247" @default.
- W2896885247 workType "book-chapter" @default.