Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896890298> ?p ?o ?g. }
- W2896890298 endingPage "233" @default.
- W2896890298 startingPage "220" @default.
- W2896890298 abstract "Ozone pollution appears as a major air quality issue, e.g. for the protection of human health and vegetation. Formation of ground level ozone is a complex photochemical phenomenon and involves numerous intricate factors most of which are interrelated with each other. Machine learning techniques can be adopted to predict the ground level ozone. The main objective of the present study is to develop the state-of-the-art ensemble bagging approach to model the summer time ground level ozone in an industrial area comprising a hazardous waste management facility. In this study, the feasibility of using ensemble model with seven meteorological parameters as input variables to predict the surface level O3 concentration. Multilayer perceptron, RTree, REPTree, and Random forest were employed as the base learners. The error measures used for checking the performance of each model includes IoAd, R2, and PEP. The model results were validated against an independent test data set. Bagged random forest predicted the ground level ozone better with higher Nash-Sutcliffe coefficient 0.93. This study scaffolded the current research gap in big data analysis identified with air pollutant prediction. Implications: The main focus of this paper is to model the summer time ground level O3 concentration in an Industrial area comprising of hazardous waste management facility. Comparison study was made between the base classifiers and the ensemble classifiers. Most of the conventional models can well predict the average concentrations. In this case the peak concentrations are of importance as it has serious effect on human health and environment. The models developed should also be homoscedastic." @default.
- W2896890298 created "2018-10-26" @default.
- W2896890298 creator A5006113731 @default.
- W2896890298 creator A5009627476 @default.
- W2896890298 date "2018-12-06" @default.
- W2896890298 modified "2023-09-25" @default.
- W2896890298 title "A novel bagging ensemble approach for predicting summertime ground-level ozone concentration" @default.
- W2896890298 cites W1676981206 @default.
- W2896890298 cites W1965404957 @default.
- W2896890298 cites W1968719625 @default.
- W2896890298 cites W1974853197 @default.
- W2896890298 cites W1984470640 @default.
- W2896890298 cites W1997386897 @default.
- W2896890298 cites W2003419268 @default.
- W2896890298 cites W2007609693 @default.
- W2896890298 cites W2017880758 @default.
- W2896890298 cites W2033228067 @default.
- W2896890298 cites W2033904036 @default.
- W2896890298 cites W2039082808 @default.
- W2896890298 cites W2048539013 @default.
- W2896890298 cites W2049929250 @default.
- W2896890298 cites W2059921386 @default.
- W2896890298 cites W2065947772 @default.
- W2896890298 cites W2069379078 @default.
- W2896890298 cites W2070493638 @default.
- W2896890298 cites W2106917665 @default.
- W2896890298 cites W2111286455 @default.
- W2896890298 cites W2123890039 @default.
- W2896890298 cites W2136643902 @default.
- W2896890298 cites W2142574797 @default.
- W2896890298 cites W2159616624 @default.
- W2896890298 cites W2184531625 @default.
- W2896890298 cites W2204672008 @default.
- W2896890298 cites W2260930460 @default.
- W2896890298 cites W2292672564 @default.
- W2896890298 cites W2296750848 @default.
- W2896890298 cites W2396428021 @default.
- W2896890298 cites W2407413588 @default.
- W2896890298 cites W2463131819 @default.
- W2896890298 cites W2487948615 @default.
- W2896890298 cites W2509427445 @default.
- W2896890298 cites W2520327139 @default.
- W2896890298 cites W2523463307 @default.
- W2896890298 cites W2534228787 @default.
- W2896890298 cites W2560924292 @default.
- W2896890298 cites W2593386112 @default.
- W2896890298 cites W2616827034 @default.
- W2896890298 cites W2638067072 @default.
- W2896890298 cites W2748230207 @default.
- W2896890298 cites W2755012395 @default.
- W2896890298 cites W2769249101 @default.
- W2896890298 cites W2769773454 @default.
- W2896890298 cites W2791081216 @default.
- W2896890298 cites W2795845062 @default.
- W2896890298 cites W2810586154 @default.
- W2896890298 cites W4239699493 @default.
- W2896890298 doi "https://doi.org/10.1080/10962247.2018.1534701" @default.
- W2896890298 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30303768" @default.
- W2896890298 hasPublicationYear "2018" @default.
- W2896890298 type Work @default.
- W2896890298 sameAs 2896890298 @default.
- W2896890298 citedByCount "8" @default.
- W2896890298 countsByYear W28968902982019 @default.
- W2896890298 countsByYear W28968902982020 @default.
- W2896890298 countsByYear W28968902982021 @default.
- W2896890298 countsByYear W28968902982022 @default.
- W2896890298 crossrefType "journal-article" @default.
- W2896890298 hasAuthorship W2896890298A5006113731 @default.
- W2896890298 hasAuthorship W2896890298A5009627476 @default.
- W2896890298 hasBestOaLocation W28968902981 @default.
- W2896890298 hasConcept C119857082 @default.
- W2896890298 hasConcept C119898033 @default.
- W2896890298 hasConcept C126314574 @default.
- W2896890298 hasConcept C142724271 @default.
- W2896890298 hasConcept C153294291 @default.
- W2896890298 hasConcept C169258074 @default.
- W2896890298 hasConcept C178790620 @default.
- W2896890298 hasConcept C185592680 @default.
- W2896890298 hasConcept C18903297 @default.
- W2896890298 hasConcept C205649164 @default.
- W2896890298 hasConcept C2776133958 @default.
- W2896890298 hasConcept C2910478969 @default.
- W2896890298 hasConcept C39432304 @default.
- W2896890298 hasConcept C41008148 @default.
- W2896890298 hasConcept C45804977 @default.
- W2896890298 hasConcept C45942800 @default.
- W2896890298 hasConcept C508106653 @default.
- W2896890298 hasConcept C521259446 @default.
- W2896890298 hasConcept C559116025 @default.
- W2896890298 hasConcept C71924100 @default.
- W2896890298 hasConcept C82685317 @default.
- W2896890298 hasConcept C86803240 @default.
- W2896890298 hasConceptScore W2896890298C119857082 @default.
- W2896890298 hasConceptScore W2896890298C119898033 @default.
- W2896890298 hasConceptScore W2896890298C126314574 @default.
- W2896890298 hasConceptScore W2896890298C142724271 @default.
- W2896890298 hasConceptScore W2896890298C153294291 @default.
- W2896890298 hasConceptScore W2896890298C169258074 @default.