Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896893308> ?p ?o ?g. }
- W2896893308 endingPage "3840" @default.
- W2896893308 startingPage "3829" @default.
- W2896893308 abstract "Multi-trait and multi-environment data are common in animal and plant breeding programs. However, what is lacking are more powerful statistical models that can exploit the correlation between traits to improve prediction accuracy in the context of genomic selection (GS). Multi-trait models are more complex than univariate models and usually require more computational resources, but they are preferred because they can exploit the correlation between traits, which many times helps improve prediction accuracy. For this reason, in this paper we explore the power of multi-trait deep learning (MTDL) models in terms of prediction accuracy. The prediction performance of MTDL models was compared to the performance of the Bayesian multi-trait and multi-environment (BMTME) model proposed by Montesinos-López et al. (2016), which is a multi-trait version of the genomic best linear unbiased prediction (GBLUP) univariate model. Both models were evaluated with predictors with and without the genotype×environment interaction term. The prediction performance of both models was evaluated in terms of Pearson's correlation using cross-validation. We found that the best predictions in two of the three data sets were found under the BMTME model, but in general the predictions of both models, BTMTE and MTDL, were similar. Among models without the genotype×environment interaction, the MTDL model was the best, while among models with genotype×environment interaction, the BMTME model was superior. These results indicate that the MTDL model is very competitive for performing predictions in the context of GS, with the important practical advantage that it requires less computational resources than the BMTME model." @default.
- W2896893308 created "2018-10-26" @default.
- W2896893308 creator A5012228350 @default.
- W2896893308 creator A5031038442 @default.
- W2896893308 creator A5049389291 @default.
- W2896893308 creator A5053601980 @default.
- W2896893308 creator A5076158905 @default.
- W2896893308 creator A5086458556 @default.
- W2896893308 date "2018-12-01" @default.
- W2896893308 modified "2023-10-18" @default.
- W2896893308 title "Multi-trait, Multi-environment Deep Learning Modeling for Genomic-Enabled Prediction of Plant Traits" @default.
- W2896893308 cites W1019830208 @default.
- W2896893308 cites W1038736503 @default.
- W2896893308 cites W1970149620 @default.
- W2896893308 cites W1988489968 @default.
- W2896893308 cites W1993849755 @default.
- W2896893308 cites W2059136964 @default.
- W2896893308 cites W2064992784 @default.
- W2896893308 cites W2067715889 @default.
- W2896893308 cites W2099209235 @default.
- W2896893308 cites W2125804487 @default.
- W2896893308 cites W2126486632 @default.
- W2896893308 cites W2129860849 @default.
- W2896893308 cites W2130060388 @default.
- W2896893308 cites W2152396323 @default.
- W2896893308 cites W2157313957 @default.
- W2896893308 cites W2168952261 @default.
- W2896893308 cites W2337287714 @default.
- W2896893308 cites W2421355487 @default.
- W2896893308 cites W2439742035 @default.
- W2896893308 cites W2495369798 @default.
- W2896893308 cites W2502051256 @default.
- W2896893308 cites W2615032961 @default.
- W2896893308 cites W2623985197 @default.
- W2896893308 cites W2743514214 @default.
- W2896893308 cites W2749701398 @default.
- W2896893308 cites W2772579250 @default.
- W2896893308 cites W2897443710 @default.
- W2896893308 cites W2952935243 @default.
- W2896893308 cites W3150571165 @default.
- W2896893308 cites W4246578495 @default.
- W2896893308 doi "https://doi.org/10.1534/g3.118.200728" @default.
- W2896893308 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6288830" @default.
- W2896893308 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30291108" @default.
- W2896893308 hasPublicationYear "2018" @default.
- W2896893308 type Work @default.
- W2896893308 sameAs 2896893308 @default.
- W2896893308 citedByCount "81" @default.
- W2896893308 countsByYear W28968933082018 @default.
- W2896893308 countsByYear W28968933082019 @default.
- W2896893308 countsByYear W28968933082020 @default.
- W2896893308 countsByYear W28968933082021 @default.
- W2896893308 countsByYear W28968933082022 @default.
- W2896893308 countsByYear W28968933082023 @default.
- W2896893308 crossrefType "journal-article" @default.
- W2896893308 hasAuthorship W2896893308A5012228350 @default.
- W2896893308 hasAuthorship W2896893308A5031038442 @default.
- W2896893308 hasAuthorship W2896893308A5049389291 @default.
- W2896893308 hasAuthorship W2896893308A5053601980 @default.
- W2896893308 hasAuthorship W2896893308A5076158905 @default.
- W2896893308 hasAuthorship W2896893308A5086458556 @default.
- W2896893308 hasBestOaLocation W28968933081 @default.
- W2896893308 hasConcept C105795698 @default.
- W2896893308 hasConcept C106934330 @default.
- W2896893308 hasConcept C107673813 @default.
- W2896893308 hasConcept C114289077 @default.
- W2896893308 hasConcept C117220453 @default.
- W2896893308 hasConcept C119857082 @default.
- W2896893308 hasConcept C124101348 @default.
- W2896893308 hasConcept C151730666 @default.
- W2896893308 hasConcept C154945302 @default.
- W2896893308 hasConcept C161584116 @default.
- W2896893308 hasConcept C165696696 @default.
- W2896893308 hasConcept C199163554 @default.
- W2896893308 hasConcept C199360897 @default.
- W2896893308 hasConcept C2524010 @default.
- W2896893308 hasConcept C2779343474 @default.
- W2896893308 hasConcept C33923547 @default.
- W2896893308 hasConcept C38652104 @default.
- W2896893308 hasConcept C41008148 @default.
- W2896893308 hasConcept C45804977 @default.
- W2896893308 hasConcept C86803240 @default.
- W2896893308 hasConceptScore W2896893308C105795698 @default.
- W2896893308 hasConceptScore W2896893308C106934330 @default.
- W2896893308 hasConceptScore W2896893308C107673813 @default.
- W2896893308 hasConceptScore W2896893308C114289077 @default.
- W2896893308 hasConceptScore W2896893308C117220453 @default.
- W2896893308 hasConceptScore W2896893308C119857082 @default.
- W2896893308 hasConceptScore W2896893308C124101348 @default.
- W2896893308 hasConceptScore W2896893308C151730666 @default.
- W2896893308 hasConceptScore W2896893308C154945302 @default.
- W2896893308 hasConceptScore W2896893308C161584116 @default.
- W2896893308 hasConceptScore W2896893308C165696696 @default.
- W2896893308 hasConceptScore W2896893308C199163554 @default.
- W2896893308 hasConceptScore W2896893308C199360897 @default.
- W2896893308 hasConceptScore W2896893308C2524010 @default.
- W2896893308 hasConceptScore W2896893308C2779343474 @default.
- W2896893308 hasConceptScore W2896893308C33923547 @default.