Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896894491> ?p ?o ?g. }
- W2896894491 abstract "Diffusion coefficient of carbon dioxide (CO2), a significant parameter describing the mass transfer process, exerts a profound influence on the safety of CO2 storage in depleted reservoirs, saline aquifers, and marine ecosystems. However, experimental determination of diffusion coefficient in CO2-brine system is time-consuming and complex because the procedure requires sophisticated laboratory equipment and reasonable interpretation methods. To facilitate the acquisition of more accurate values, an intelligent model, termed MKSVM-GA, is developed using a hybrid technique of support vector machine (SVM), mixed kernels (MK), and genetic algorithm (GA). Confirmed by the statistical evaluation indicators, our proposed model exhibits excellent performance with high accuracy and strong robustness in a wide range of temperatures (273–473.15 K), pressures (0.1–49.3 MPa), and viscosities (0.139–1.950 mPa·s). Our results show that the proposed model is more applicable than the artificial neural network (ANN) model at this sample size, which is superior to four commonly used traditional empirical correlations. The technique presented in this study can provide a fast and precise prediction of CO2 diffusivity in brine at reservoir conditions for the engineering design and the technical risk assessment during the process of CO2 injection." @default.
- W2896894491 created "2018-10-26" @default.
- W2896894491 creator A5006550291 @default.
- W2896894491 creator A5010776974 @default.
- W2896894491 creator A5021681759 @default.
- W2896894491 creator A5068510238 @default.
- W2896894491 creator A5084169858 @default.
- W2896894491 date "2018-11-19" @default.
- W2896894491 modified "2023-10-18" @default.
- W2896894491 title "Estimation of CO2 Diffusivity in Brine by Use of the Genetic Algorithm and Mixed Kernels-Based Support Vector Machine Model" @default.
- W2896894491 cites W1579064823 @default.
- W2896894491 cites W1731652450 @default.
- W2896894491 cites W1964357740 @default.
- W2896894491 cites W1965928299 @default.
- W2896894491 cites W1967607987 @default.
- W2896894491 cites W1971278352 @default.
- W2896894491 cites W1972675862 @default.
- W2896894491 cites W1973209654 @default.
- W2896894491 cites W1977059499 @default.
- W2896894491 cites W1979952782 @default.
- W2896894491 cites W1980311188 @default.
- W2896894491 cites W1981107711 @default.
- W2896894491 cites W1995961111 @default.
- W2896894491 cites W2005894898 @default.
- W2896894491 cites W2011816539 @default.
- W2896894491 cites W2012528628 @default.
- W2896894491 cites W2025980658 @default.
- W2896894491 cites W2027501250 @default.
- W2896894491 cites W2027838767 @default.
- W2896894491 cites W2028124403 @default.
- W2896894491 cites W2033758123 @default.
- W2896894491 cites W2041019777 @default.
- W2896894491 cites W2041116065 @default.
- W2896894491 cites W2042315239 @default.
- W2896894491 cites W2042733317 @default.
- W2896894491 cites W2045937196 @default.
- W2896894491 cites W2046308700 @default.
- W2896894491 cites W2049401722 @default.
- W2896894491 cites W2049615494 @default.
- W2896894491 cites W2055446674 @default.
- W2896894491 cites W2056319361 @default.
- W2896894491 cites W2056356551 @default.
- W2896894491 cites W2064575768 @default.
- W2896894491 cites W2066968710 @default.
- W2896894491 cites W2067583066 @default.
- W2896894491 cites W2073757146 @default.
- W2896894491 cites W2074435123 @default.
- W2896894491 cites W2074703354 @default.
- W2896894491 cites W2077277373 @default.
- W2896894491 cites W2078114787 @default.
- W2896894491 cites W2087347434 @default.
- W2896894491 cites W2087897366 @default.
- W2896894491 cites W2088730795 @default.
- W2896894491 cites W2090504937 @default.
- W2896894491 cites W2104944424 @default.
- W2896894491 cites W2112393391 @default.
- W2896894491 cites W2120824619 @default.
- W2896894491 cites W2130441743 @default.
- W2896894491 cites W2139881352 @default.
- W2896894491 cites W2152783510 @default.
- W2896894491 cites W2158946314 @default.
- W2896894491 cites W2162966874 @default.
- W2896894491 cites W2166784765 @default.
- W2896894491 cites W2198619853 @default.
- W2896894491 cites W2244110959 @default.
- W2896894491 cites W2266914217 @default.
- W2896894491 cites W2271186739 @default.
- W2896894491 cites W2312329288 @default.
- W2896894491 cites W2319942742 @default.
- W2896894491 cites W2411017694 @default.
- W2896894491 cites W2418247804 @default.
- W2896894491 cites W2463058285 @default.
- W2896894491 cites W2469555467 @default.
- W2896894491 cites W2490613937 @default.
- W2896894491 cites W2513727561 @default.
- W2896894491 cites W2518246383 @default.
- W2896894491 cites W2522421281 @default.
- W2896894491 cites W2537880889 @default.
- W2896894491 cites W2559015170 @default.
- W2896894491 cites W2756943920 @default.
- W2896894491 cites W2767509613 @default.
- W2896894491 cites W2771282241 @default.
- W2896894491 cites W2785850426 @default.
- W2896894491 cites W2788385285 @default.
- W2896894491 cites W2791159707 @default.
- W2896894491 cites W2793743408 @default.
- W2896894491 cites W2794078059 @default.
- W2896894491 cites W2801621690 @default.
- W2896894491 cites W2803396148 @default.
- W2896894491 cites W2804646842 @default.
- W2896894491 cites W2974944003 @default.
- W2896894491 cites W4239510810 @default.
- W2896894491 cites W4250503569 @default.
- W2896894491 doi "https://doi.org/10.1115/1.4041724" @default.
- W2896894491 hasPublicationYear "2018" @default.
- W2896894491 type Work @default.
- W2896894491 sameAs 2896894491 @default.
- W2896894491 citedByCount "11" @default.
- W2896894491 countsByYear W28968944912019 @default.
- W2896894491 countsByYear W28968944912020 @default.