Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896894777> ?p ?o ?g. }
- W2896894777 endingPage "1668" @default.
- W2896894777 startingPage "1668" @default.
- W2896894777 abstract "One may consider the application of remote sensing as a trade-off between the imaging platforms, sensors, and data gathering and processing techniques. This study addresses the potential of hyperspectral imaging using ultra-light aircraft for vegetation species mapping in an urban environment, exploring both the engineering and scientific aspects related to imaging platform design and image classification methods. An imaging system based on simultaneous use of Rikola frame format hyperspectral and Nikon D800E adopted colour infrared cameras installed onboard a Bekas X32 manned ultra-light aircraft is introduced. Two test imaging flight missions were conducted in July of 2015 and September of 2016 over a 4000 ha area in Kaunas City, Lithuania. Sixteen and 64 spectral bands in 2015 and 2016, respectively, in a spectral range of 500–900 nm were recorded with colour infrared images. Three research questions were explored assessing the identification of six deciduous tree species: (1) Pre-treatment of spectral features for classification, (2) testing five conventional machine learning classifiers, and (3) fusion of hyperspectral and colour infrared images. Classification performance was assessed by applying leave-one-out cross-validation at the individual crown level and using as a reference at least 100 field inventoried trees for each species. The best-performing classification algorithm—multilayer perceptron, using all spectral properties extracted from the hyperspectral images—resulted in a moderate classification accuracy. The overall classification accuracy was 63%, Cohen’s Kappa was 0.54, and the species-specific classification accuracies were in the range of 51–72%. Hyperspectral images resulted in significantly better tree species classification ability than the colour infrared images and simultaneous use of spectral properties extracted from hyperspectral and colour infrared images improved slightly the accuracy over the 2015 image. Even though classifications using hyperspectral data cubes of 64 bands resulted in relatively larger accuracies than with 16 bands, classification error matrices were not statistically different. Alternative imaging platforms (like an unmanned aerial vehicle and a Cessna 172 aircraft) and settings of the flights were discussed using simulated imaging projects assuming the same study area and field of application. Ultra-light aircraft-based hyperspectral and colour-infrared imaging was considered to be a technically and economically sound solution for urban green space inventories to facilitate tree mapping, characterization, and monitoring." @default.
- W2896894777 created "2018-10-26" @default.
- W2896894777 creator A5010603928 @default.
- W2896894777 creator A5045412512 @default.
- W2896894777 creator A5056794225 @default.
- W2896894777 creator A5060716137 @default.
- W2896894777 creator A5071780877 @default.
- W2896894777 creator A5074792075 @default.
- W2896894777 date "2018-10-22" @default.
- W2896894777 modified "2023-09-25" @default.
- W2896894777 title "Ultra-Light Aircraft-Based Hyperspectral and Colour-Infrared Imaging to Identify Deciduous Tree Species in an Urban Environment" @default.
- W2896894777 cites W1155710471 @default.
- W2896894777 cites W1488309124 @default.
- W2896894777 cites W1967113280 @default.
- W2896894777 cites W1980852692 @default.
- W2896894777 cites W1989733534 @default.
- W2896894777 cites W1992593655 @default.
- W2896894777 cites W1994668970 @default.
- W2896894777 cites W1994790229 @default.
- W2896894777 cites W1998943389 @default.
- W2896894777 cites W1999410614 @default.
- W2896894777 cites W2004553299 @default.
- W2896894777 cites W2006262525 @default.
- W2896894777 cites W2006588449 @default.
- W2896894777 cites W2006888104 @default.
- W2896894777 cites W2007173715 @default.
- W2896894777 cites W2017792394 @default.
- W2896894777 cites W2025201357 @default.
- W2896894777 cites W2037295424 @default.
- W2896894777 cites W2055065556 @default.
- W2896894777 cites W2057944383 @default.
- W2896894777 cites W2059688044 @default.
- W2896894777 cites W2063396028 @default.
- W2896894777 cites W2065092410 @default.
- W2896894777 cites W2066416082 @default.
- W2896894777 cites W2083270190 @default.
- W2896894777 cites W2086955441 @default.
- W2896894777 cites W2089212648 @default.
- W2896894777 cites W2096002337 @default.
- W2896894777 cites W2107880390 @default.
- W2896894777 cites W2109527455 @default.
- W2896894777 cites W2112725102 @default.
- W2896894777 cites W2115570301 @default.
- W2896894777 cites W2116019572 @default.
- W2896894777 cites W2125865984 @default.
- W2896894777 cites W2134312403 @default.
- W2896894777 cites W2136625467 @default.
- W2896894777 cites W2146126838 @default.
- W2896894777 cites W2151108073 @default.
- W2896894777 cites W2161567984 @default.
- W2896894777 cites W2164777277 @default.
- W2896894777 cites W2168997446 @default.
- W2896894777 cites W223539122 @default.
- W2896894777 cites W2250690720 @default.
- W2896894777 cites W2327650336 @default.
- W2896894777 cites W2329399715 @default.
- W2896894777 cites W2334995018 @default.
- W2896894777 cites W2338166887 @default.
- W2896894777 cites W2405365025 @default.
- W2896894777 cites W2417835980 @default.
- W2896894777 cites W2501430999 @default.
- W2896894777 cites W2538244214 @default.
- W2896894777 cites W2542055599 @default.
- W2896894777 cites W2591466624 @default.
- W2896894777 cites W2604870469 @default.
- W2896894777 cites W2621744719 @default.
- W2896894777 cites W2665869568 @default.
- W2896894777 cites W2790979755 @default.
- W2896894777 cites W2791947863 @default.
- W2896894777 cites W2885085815 @default.
- W2896894777 cites W2886493749 @default.
- W2896894777 cites W2911964244 @default.
- W2896894777 cites W4244238212 @default.
- W2896894777 cites W1969842782 @default.
- W2896894777 doi "https://doi.org/10.3390/rs10101668" @default.
- W2896894777 hasPublicationYear "2018" @default.
- W2896894777 type Work @default.
- W2896894777 sameAs 2896894777 @default.
- W2896894777 citedByCount "13" @default.
- W2896894777 countsByYear W28968947772019 @default.
- W2896894777 countsByYear W28968947772020 @default.
- W2896894777 countsByYear W28968947772021 @default.
- W2896894777 countsByYear W28968947772022 @default.
- W2896894777 countsByYear W28968947772023 @default.
- W2896894777 crossrefType "journal-article" @default.
- W2896894777 hasAuthorship W2896894777A5010603928 @default.
- W2896894777 hasAuthorship W2896894777A5045412512 @default.
- W2896894777 hasAuthorship W2896894777A5056794225 @default.
- W2896894777 hasAuthorship W2896894777A5060716137 @default.
- W2896894777 hasAuthorship W2896894777A5071780877 @default.
- W2896894777 hasAuthorship W2896894777A5074792075 @default.
- W2896894777 hasBestOaLocation W28968947771 @default.
- W2896894777 hasConcept C114700698 @default.
- W2896894777 hasConcept C120665830 @default.
- W2896894777 hasConcept C121332964 @default.
- W2896894777 hasConcept C153180895 @default.
- W2896894777 hasConcept C154945302 @default.
- W2896894777 hasConcept C159078339 @default.