Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896894846> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2896894846 endingPage "192" @default.
- W2896894846 startingPage "182" @default.
- W2896894846 abstract "Abstract If a leak occurs for a valve in a natural gas station, it will first cause economic loss. Second, the gas leakage may also lead to the pollution of other pipeline systems as well as to environmental pollution. Under extreme conditions, it may even lead to an explosion, endangering the safety of the staff. Therefore, we urgently need a means to solve these problems. At present, acoustic emission (AE) detection technology is the most widely used method of diagnosing the valve leakage. The effects of gas leakage mainly depend on the valve leakage rate. However, the internal valve leakage rate is a multivariable, nonlinear, and time-varying process. Therefore, the accurate prediction of the valve leakage rate is an important challenge. Recognising this challenge, a novel prediction method, namely, regression-based deep belief network (DBN), which substitutes the linear regression (LR) layer for the linear softmax classification layer at the top of the general DBN’s structure, has been proposed to predict the internal leakage rates of a valve in a natural gas pipeline. The internal leakage signals of a ball valve and a plug valve were collected using the AE system. The time–frequency features of the signals, inlet pressure of the pipe, and the valve type are used as the input variables to predict the leakage rates with the DBN model. The ball valve leakage data, plug valve leakage data, and mixed leakage data of both are used to establish and test the proposed models separately. At the same time, the back-propagation neural network (BPNN), support vector regression using linear (L-SVR), polynomial (P-SVR) and Radial basis function (RBF-SVR) kernels and the proposed DBN were all developed and compared to check the performance. After analysing the prediction results of these models, we found that the nonlinear and unstable features of the valve internal leakage signals could be well studied by using the DBN model. In addition, the performance of the DBN model was superior to that of the traditional prediction models for the three types of data. Therefore, it can be proven that the proposed model has huge practical application value for predicting the gas leakage rates of a valve in a natural gas pipeline system and has a guiding significance for predicting the other fluid leakage rates of a valve in other pipeline systems." @default.
- W2896894846 created "2018-10-26" @default.
- W2896894846 creator A5015372940 @default.
- W2896894846 creator A5031780040 @default.
- W2896894846 creator A5047935895 @default.
- W2896894846 creator A5051219791 @default.
- W2896894846 creator A5052226015 @default.
- W2896894846 date "2019-02-01" @default.
- W2896894846 modified "2023-09-30" @default.
- W2896894846 title "Deep belief network-based internal valve leakage rate prediction approach" @default.
- W2896894846 cites W1982153574 @default.
- W2896894846 cites W1988518729 @default.
- W2896894846 cites W1993882792 @default.
- W2896894846 cites W2021738174 @default.
- W2896894846 cites W2037168833 @default.
- W2896894846 cites W2044309218 @default.
- W2896894846 cites W2045256553 @default.
- W2896894846 cites W2064630666 @default.
- W2896894846 cites W2093866254 @default.
- W2896894846 cites W2100495367 @default.
- W2896894846 cites W2112896279 @default.
- W2896894846 cites W2136922672 @default.
- W2896894846 cites W2149706265 @default.
- W2896894846 cites W2282992258 @default.
- W2896894846 cites W2299567191 @default.
- W2896894846 cites W2329574520 @default.
- W2896894846 cites W2408153441 @default.
- W2896894846 cites W2489528756 @default.
- W2896894846 cites W2511683089 @default.
- W2896894846 cites W2533785297 @default.
- W2896894846 cites W2604099671 @default.
- W2896894846 cites W2767547957 @default.
- W2896894846 cites W2802499866 @default.
- W2896894846 doi "https://doi.org/10.1016/j.measurement.2018.10.020" @default.
- W2896894846 hasPublicationYear "2019" @default.
- W2896894846 type Work @default.
- W2896894846 sameAs 2896894846 @default.
- W2896894846 citedByCount "33" @default.
- W2896894846 countsByYear W28968948462019 @default.
- W2896894846 countsByYear W28968948462020 @default.
- W2896894846 countsByYear W28968948462021 @default.
- W2896894846 countsByYear W28968948462022 @default.
- W2896894846 countsByYear W28968948462023 @default.
- W2896894846 crossrefType "journal-article" @default.
- W2896894846 hasAuthorship W2896894846A5015372940 @default.
- W2896894846 hasAuthorship W2896894846A5031780040 @default.
- W2896894846 hasAuthorship W2896894846A5047935895 @default.
- W2896894846 hasAuthorship W2896894846A5051219791 @default.
- W2896894846 hasAuthorship W2896894846A5052226015 @default.
- W2896894846 hasConcept C139719470 @default.
- W2896894846 hasConcept C154945302 @default.
- W2896894846 hasConcept C162324750 @default.
- W2896894846 hasConcept C2777042071 @default.
- W2896894846 hasConcept C41008148 @default.
- W2896894846 hasConceptScore W2896894846C139719470 @default.
- W2896894846 hasConceptScore W2896894846C154945302 @default.
- W2896894846 hasConceptScore W2896894846C162324750 @default.
- W2896894846 hasConceptScore W2896894846C2777042071 @default.
- W2896894846 hasConceptScore W2896894846C41008148 @default.
- W2896894846 hasLocation W28968948461 @default.
- W2896894846 hasOpenAccess W2896894846 @default.
- W2896894846 hasPrimaryLocation W28968948461 @default.
- W2896894846 hasRelatedWork W2049775471 @default.
- W2896894846 hasRelatedWork W2093578348 @default.
- W2896894846 hasRelatedWork W2350741829 @default.
- W2896894846 hasRelatedWork W2358668433 @default.
- W2896894846 hasRelatedWork W2376932109 @default.
- W2896894846 hasRelatedWork W2382290278 @default.
- W2896894846 hasRelatedWork W2390279801 @default.
- W2896894846 hasRelatedWork W2748952813 @default.
- W2896894846 hasRelatedWork W2899084033 @default.
- W2896894846 hasRelatedWork W3004735627 @default.
- W2896894846 hasVolume "133" @default.
- W2896894846 isParatext "false" @default.
- W2896894846 isRetracted "false" @default.
- W2896894846 magId "2896894846" @default.
- W2896894846 workType "article" @default.