Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896895627> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2896895627 abstract "Artificial neural networks are experiencing today an unprecedented interest thanks to two main changes: the explosion of open data that is necessary for their training, and the increasing computing power of today’s computers that makes the training part possible in a reasonable time. The recent results of deep neural networks on image classification has given neural networks the leading role in machine learning algorithms and artificial intelligence research. However, most applications such as smart devices or autonomous vehicles require an embedded implementation of neural networks. Their implementation in CPU/GPU remains too expensive, mostly in energy consumption, due to the non-adaptation of the hardware to the computation model, which becomes a limit to their use. It is therefore necessary to design neuromorphic architectures, i.e. hardware accelerators that fit to the parallel and distributed computation paradigm of neural networks for reducing their hardware cost implementation. We mainly focus on the optimization of energy consumption to enable integration in embedded systems. For this purpose, we implement two models of artificial neural networks coming from two different scientific domains: the multi- layer perceptron derived from machine learning and the spiking neural network inspired from neuroscience. We compare the performances of both approaches in terms of accuracy and hardware cost to find out the most attractive architecture for the design of embedded artificial intelligence." @default.
- W2896895627 created "2018-10-26" @default.
- W2896895627 creator A5020816441 @default.
- W2896895627 creator A5058666219 @default.
- W2896895627 creator A5080472332 @default.
- W2896895627 date "2018-07-01" @default.
- W2896895627 modified "2023-10-18" @default.
- W2896895627 title "Confronting machine-learning with neuroscience for neuromorphic architectures design" @default.
- W2896895627 cites W1963689209 @default.
- W2896895627 cites W1986760892 @default.
- W2896895627 cites W2043679829 @default.
- W2896895627 cites W2067323599 @default.
- W2896895627 cites W2088950223 @default.
- W2896895627 cites W2112796928 @default.
- W2896895627 cites W2138913040 @default.
- W2896895627 cites W2157239334 @default.
- W2896895627 cites W2159951683 @default.
- W2896895627 cites W2187011629 @default.
- W2896895627 cites W2237922334 @default.
- W2896895627 cites W2604319603 @default.
- W2896895627 cites W2733297609 @default.
- W2896895627 cites W2735289987 @default.
- W2896895627 cites W4238404964 @default.
- W2896895627 doi "https://doi.org/10.1109/ijcnn.2018.8489241" @default.
- W2896895627 hasPublicationYear "2018" @default.
- W2896895627 type Work @default.
- W2896895627 sameAs 2896895627 @default.
- W2896895627 citedByCount "22" @default.
- W2896895627 countsByYear W28968956272018 @default.
- W2896895627 countsByYear W28968956272019 @default.
- W2896895627 countsByYear W28968956272020 @default.
- W2896895627 countsByYear W28968956272021 @default.
- W2896895627 countsByYear W28968956272022 @default.
- W2896895627 countsByYear W28968956272023 @default.
- W2896895627 crossrefType "proceedings-article" @default.
- W2896895627 hasAuthorship W2896895627A5020816441 @default.
- W2896895627 hasAuthorship W2896895627A5058666219 @default.
- W2896895627 hasAuthorship W2896895627A5080472332 @default.
- W2896895627 hasBestOaLocation W28968956274 @default.
- W2896895627 hasConcept C107457646 @default.
- W2896895627 hasConcept C118524514 @default.
- W2896895627 hasConcept C151927369 @default.
- W2896895627 hasConcept C154945302 @default.
- W2896895627 hasConcept C15744967 @default.
- W2896895627 hasConcept C169760540 @default.
- W2896895627 hasConcept C41008148 @default.
- W2896895627 hasConcept C50644808 @default.
- W2896895627 hasConceptScore W2896895627C107457646 @default.
- W2896895627 hasConceptScore W2896895627C118524514 @default.
- W2896895627 hasConceptScore W2896895627C151927369 @default.
- W2896895627 hasConceptScore W2896895627C154945302 @default.
- W2896895627 hasConceptScore W2896895627C15744967 @default.
- W2896895627 hasConceptScore W2896895627C169760540 @default.
- W2896895627 hasConceptScore W2896895627C41008148 @default.
- W2896895627 hasConceptScore W2896895627C50644808 @default.
- W2896895627 hasLocation W28968956271 @default.
- W2896895627 hasLocation W28968956272 @default.
- W2896895627 hasLocation W28968956273 @default.
- W2896895627 hasLocation W28968956274 @default.
- W2896895627 hasOpenAccess W2896895627 @default.
- W2896895627 hasPrimaryLocation W28968956271 @default.
- W2896895627 hasRelatedWork W1941635030 @default.
- W2896895627 hasRelatedWork W2162462041 @default.
- W2896895627 hasRelatedWork W2951049725 @default.
- W2896895627 hasRelatedWork W3015991694 @default.
- W2896895627 hasRelatedWork W3031505884 @default.
- W2896895627 hasRelatedWork W4200629025 @default.
- W2896895627 hasRelatedWork W4226476900 @default.
- W2896895627 hasRelatedWork W4283689376 @default.
- W2896895627 hasRelatedWork W4285308918 @default.
- W2896895627 hasRelatedWork W4381856503 @default.
- W2896895627 isParatext "false" @default.
- W2896895627 isRetracted "false" @default.
- W2896895627 magId "2896895627" @default.
- W2896895627 workType "article" @default.