Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896899124> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2896899124 abstract "Energy consumption prediction typically corresponds to a multivariate time series prediction task where different channels in the multivariate time series represent energy consumption data and various auxiliary data related to energy consumption such as environmental factors. It is non-trivial to resolve this task, which requires finding the most appropriate prediction model and the most useful features (extracted from the raw data) to be used by the model. This work proposes an evolutionary multi-objective ensemble learning (EMOEL) technique which uses extreme learning machines (ELMs) as base predictors due to its highly recognized efficacy. EMOEL employs evolutionary multi-objective optimization to search for the optimal parameters of the model as well as the optimal features fed into the model subjected to two conflicting criteria, i.e., accuracy and diversity. It leads to a Pareto front composed of non-dominated optimal solutions where each solution depicts the number of hidden neurons in the ELM, the selected channels in the multivariate time series, the selected feature extraction methods and the selected time windows applied to the selected channels. The optimal solutions in the Pareto front stand for different end-to-end prediction models which may lead to different prediction results. To boost ultimate prediction accuracy, the models with respect to these optimal solutions are linearly combined with combination coefficients being optimized via an evolutionary algorithm. We evaluate the proposed method in comparison to some existing prediction techniques on an Australian University based dataset, which demonstrates the superiority of the proposed method." @default.
- W2896899124 created "2018-10-26" @default.
- W2896899124 creator A5006614329 @default.
- W2896899124 creator A5011086593 @default.
- W2896899124 creator A5090893421 @default.
- W2896899124 date "2018-07-01" @default.
- W2896899124 modified "2023-10-14" @default.
- W2896899124 title "Evolutionary Multi-objective Ensemble Learning for Multivariate Electricity Consumption Prediction" @default.
- W2896899124 cites W1510763264 @default.
- W2896899124 cites W1595159159 @default.
- W2896899124 cites W1881999183 @default.
- W2896899124 cites W1984447710 @default.
- W2896899124 cites W1987938889 @default.
- W2896899124 cites W2010941383 @default.
- W2896899124 cites W2016031633 @default.
- W2896899124 cites W2047143310 @default.
- W2896899124 cites W2074001187 @default.
- W2896899124 cites W2089822378 @default.
- W2896899124 cites W2093872789 @default.
- W2896899124 cites W2102386495 @default.
- W2896899124 cites W2106595237 @default.
- W2896899124 cites W2111072639 @default.
- W2896899124 cites W2116374865 @default.
- W2896899124 cites W2130608062 @default.
- W2896899124 cites W2136127502 @default.
- W2896899124 cites W2140229565 @default.
- W2896899124 cites W2143381319 @default.
- W2896899124 cites W2145251512 @default.
- W2896899124 cites W2146300243 @default.
- W2896899124 cites W2151447451 @default.
- W2896899124 cites W2153635508 @default.
- W2896899124 cites W2157331557 @default.
- W2896899124 cites W2172148088 @default.
- W2896899124 cites W2292129691 @default.
- W2896899124 cites W2301541953 @default.
- W2896899124 cites W2471161958 @default.
- W2896899124 cites W2766624375 @default.
- W2896899124 cites W4242702158 @default.
- W2896899124 cites W2555924706 @default.
- W2896899124 doi "https://doi.org/10.1109/ijcnn.2018.8489261" @default.
- W2896899124 hasPublicationYear "2018" @default.
- W2896899124 type Work @default.
- W2896899124 sameAs 2896899124 @default.
- W2896899124 citedByCount "5" @default.
- W2896899124 countsByYear W28968991242019 @default.
- W2896899124 countsByYear W28968991242021 @default.
- W2896899124 countsByYear W28968991242022 @default.
- W2896899124 countsByYear W28968991242023 @default.
- W2896899124 crossrefType "proceedings-article" @default.
- W2896899124 hasAuthorship W2896899124A5006614329 @default.
- W2896899124 hasAuthorship W2896899124A5011086593 @default.
- W2896899124 hasAuthorship W2896899124A5090893421 @default.
- W2896899124 hasConcept C119599485 @default.
- W2896899124 hasConcept C119857082 @default.
- W2896899124 hasConcept C119898033 @default.
- W2896899124 hasConcept C124101348 @default.
- W2896899124 hasConcept C127413603 @default.
- W2896899124 hasConcept C154945302 @default.
- W2896899124 hasConcept C159149176 @default.
- W2896899124 hasConcept C161584116 @default.
- W2896899124 hasConcept C2780150128 @default.
- W2896899124 hasConcept C2780165032 @default.
- W2896899124 hasConcept C41008148 @default.
- W2896899124 hasConcept C45804977 @default.
- W2896899124 hasConcept C45942800 @default.
- W2896899124 hasConcept C50644808 @default.
- W2896899124 hasConcept C68781425 @default.
- W2896899124 hasConceptScore W2896899124C119599485 @default.
- W2896899124 hasConceptScore W2896899124C119857082 @default.
- W2896899124 hasConceptScore W2896899124C119898033 @default.
- W2896899124 hasConceptScore W2896899124C124101348 @default.
- W2896899124 hasConceptScore W2896899124C127413603 @default.
- W2896899124 hasConceptScore W2896899124C154945302 @default.
- W2896899124 hasConceptScore W2896899124C159149176 @default.
- W2896899124 hasConceptScore W2896899124C161584116 @default.
- W2896899124 hasConceptScore W2896899124C2780150128 @default.
- W2896899124 hasConceptScore W2896899124C2780165032 @default.
- W2896899124 hasConceptScore W2896899124C41008148 @default.
- W2896899124 hasConceptScore W2896899124C45804977 @default.
- W2896899124 hasConceptScore W2896899124C45942800 @default.
- W2896899124 hasConceptScore W2896899124C50644808 @default.
- W2896899124 hasConceptScore W2896899124C68781425 @default.
- W2896899124 hasLocation W28968991241 @default.
- W2896899124 hasOpenAccess W2896899124 @default.
- W2896899124 hasPrimaryLocation W28968991241 @default.
- W2896899124 hasRelatedWork W1807784185 @default.
- W2896899124 hasRelatedWork W1909207154 @default.
- W2896899124 hasRelatedWork W2794896638 @default.
- W2896899124 hasRelatedWork W3009797526 @default.
- W2896899124 hasRelatedWork W3101614107 @default.
- W2896899124 hasRelatedWork W3124390867 @default.
- W2896899124 hasRelatedWork W3149839747 @default.
- W2896899124 hasRelatedWork W3202800081 @default.
- W2896899124 hasRelatedWork W3204228978 @default.
- W2896899124 hasRelatedWork W45170056 @default.
- W2896899124 isParatext "false" @default.
- W2896899124 isRetracted "false" @default.
- W2896899124 magId "2896899124" @default.
- W2896899124 workType "article" @default.