Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896900946> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2896900946 abstract "The in silico prediction of potential drug-targetinteractions is of critical importance in drug research. Existing computational methods have achieved remarkable prediction accuracy, however usually obtain poor prediction efficiency due to computational problems. To improve the prediction efficiency, we propose to predict drug targets based on inte- gration of heterogeneous features with anchor graph hashing and ensemble learning. First, we encode each drug as a 5682- bit vector, and each target as a 4198-bit vector using their heterogeneous features respectively. Then, these vectors are embedded into low-dimensional Hamming Space using anchor graph hashing. Next, we append hashing bits of a target to hashing bits of a drug as a vector to represent the drug-target pair. Finally, vectors of positive samples composed of known drug-target pairs and randomly selected negative samples are used to train and evaluate the ensemble learning model. The performance of the proposed method is evaluated on simulative target prediction of 1094 drugs from DrugBank. Ex- tensive comparison experiments demonstrate that the proposed method can achieve high prediction efficiency while preserving satisfactory accuracy. In fact, it is 99.3 times faster and only 0.001 less in AUC than the best literature method “Pairwise Kernel Method”." @default.
- W2896900946 created "2018-10-26" @default.
- W2896900946 creator A5035648498 @default.
- W2896900946 creator A5062825549 @default.
- W2896900946 creator A5062861795 @default.
- W2896900946 creator A5068382420 @default.
- W2896900946 creator A5079911106 @default.
- W2896900946 date "2018-07-01" @default.
- W2896900946 modified "2023-10-17" @default.
- W2896900946 title "Predicting Drug Targets from Heterogeneous Spaces using Anchor Graph Hashing and Ensemble Learning" @default.
- W2896900946 cites W1527927437 @default.
- W2896900946 cites W1980121140 @default.
- W2896900946 cites W1986684432 @default.
- W2896900946 cites W1997453506 @default.
- W2896900946 cites W2049454409 @default.
- W2896900946 cites W2062340962 @default.
- W2896900946 cites W2100672820 @default.
- W2896900946 cites W2104950117 @default.
- W2896900946 cites W2106029302 @default.
- W2896900946 cites W2139736926 @default.
- W2896900946 cites W2143645984 @default.
- W2896900946 cites W2146382443 @default.
- W2896900946 cites W2154896031 @default.
- W2896900946 cites W2156012049 @default.
- W2896900946 cites W2156077095 @default.
- W2896900946 cites W2167212630 @default.
- W2896900946 cites W2175779570 @default.
- W2896900946 cites W2419892062 @default.
- W2896900946 cites W2539985226 @default.
- W2896900946 cites W2563206593 @default.
- W2896900946 cites W3102476541 @default.
- W2896900946 cites W4243603320 @default.
- W2896900946 cites W4248391971 @default.
- W2896900946 doi "https://doi.org/10.1109/ijcnn.2018.8489028" @default.
- W2896900946 hasPublicationYear "2018" @default.
- W2896900946 type Work @default.
- W2896900946 sameAs 2896900946 @default.
- W2896900946 citedByCount "5" @default.
- W2896900946 countsByYear W28969009462020 @default.
- W2896900946 countsByYear W28969009462021 @default.
- W2896900946 countsByYear W28969009462022 @default.
- W2896900946 crossrefType "proceedings-article" @default.
- W2896900946 hasAuthorship W2896900946A5035648498 @default.
- W2896900946 hasAuthorship W2896900946A5062825549 @default.
- W2896900946 hasAuthorship W2896900946A5062861795 @default.
- W2896900946 hasAuthorship W2896900946A5068382420 @default.
- W2896900946 hasAuthorship W2896900946A5079911106 @default.
- W2896900946 hasBestOaLocation W28969009462 @default.
- W2896900946 hasConcept C119857082 @default.
- W2896900946 hasConcept C132525143 @default.
- W2896900946 hasConcept C154945302 @default.
- W2896900946 hasConcept C38652104 @default.
- W2896900946 hasConcept C41008148 @default.
- W2896900946 hasConcept C45942800 @default.
- W2896900946 hasConcept C80444323 @default.
- W2896900946 hasConcept C99138194 @default.
- W2896900946 hasConceptScore W2896900946C119857082 @default.
- W2896900946 hasConceptScore W2896900946C132525143 @default.
- W2896900946 hasConceptScore W2896900946C154945302 @default.
- W2896900946 hasConceptScore W2896900946C38652104 @default.
- W2896900946 hasConceptScore W2896900946C41008148 @default.
- W2896900946 hasConceptScore W2896900946C45942800 @default.
- W2896900946 hasConceptScore W2896900946C80444323 @default.
- W2896900946 hasConceptScore W2896900946C99138194 @default.
- W2896900946 hasLocation W28969009461 @default.
- W2896900946 hasLocation W28969009462 @default.
- W2896900946 hasOpenAccess W2896900946 @default.
- W2896900946 hasPrimaryLocation W28969009461 @default.
- W2896900946 hasRelatedWork W2810053714 @default.
- W2896900946 hasRelatedWork W2883828728 @default.
- W2896900946 hasRelatedWork W2941606940 @default.
- W2896900946 hasRelatedWork W3005055299 @default.
- W2896900946 hasRelatedWork W3167812655 @default.
- W2896900946 hasRelatedWork W4200126462 @default.
- W2896900946 hasRelatedWork W4200409985 @default.
- W2896900946 hasRelatedWork W4281757034 @default.
- W2896900946 hasRelatedWork W4285741730 @default.
- W2896900946 hasRelatedWork W4292969247 @default.
- W2896900946 isParatext "false" @default.
- W2896900946 isRetracted "false" @default.
- W2896900946 magId "2896900946" @default.
- W2896900946 workType "article" @default.