Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896901616> ?p ?o ?g. }
- W2896901616 abstract "Railway component inspection is a technique widely used for maintenance because defective components pose safety issues. Nevertheless, finding defective components is a hard task because they are normally hidden by dusty, which poses hard problems for the image segmentation algorithms. To approach this problem, manual inspection by humans is normally used, but it is time consuming, expensive and sometimes dangerous. Meanwhile, automatic approaches that uses machine learning algorithms are also difficult because the datasets are strongly unbalanced. Such datasets usually induce biased classification models that identify new instances as members of the class with the greatest abundance of examples in the training data. In this paper, we propose a new method that combines the use of Convolutional Neural Networks (CNN) with imbalanced learning to address the challenge of using machine learning to identify defective components. Our method was tested with realworld data from images used for wagon component inspection. Moreover, we compared our method with an ensemble of MLP networks using features extraction, such as the LeNet, and a CNN network without ensemble learning. Results indicate that our proposed method produced the higher overall accuracy compared to the other methods." @default.
- W2896901616 created "2018-10-26" @default.
- W2896901616 creator A5003216180 @default.
- W2896901616 creator A5014594358 @default.
- W2896901616 creator A5049786535 @default.
- W2896901616 creator A5050722957 @default.
- W2896901616 creator A5062579246 @default.
- W2896901616 creator A5064508238 @default.
- W2896901616 creator A5087162817 @default.
- W2896901616 creator A5090973825 @default.
- W2896901616 date "2018-07-01" @default.
- W2896901616 modified "2023-10-02" @default.
- W2896901616 title "An Ensemble of Convolutional Neural Networks for Unbalanced Datasets: A case Study with Wagon Component Inspection" @default.
- W2896901616 cites W1666541006 @default.
- W2896901616 cites W169539560 @default.
- W2896901616 cites W1977245551 @default.
- W2896901616 cites W1993989674 @default.
- W2896901616 cites W2001120434 @default.
- W2896901616 cites W2010941383 @default.
- W2896901616 cites W2015452969 @default.
- W2896901616 cites W2024223694 @default.
- W2896901616 cites W2029896651 @default.
- W2896901616 cites W2033110225 @default.
- W2896901616 cites W2042086215 @default.
- W2896901616 cites W2063045209 @default.
- W2896901616 cites W2078885513 @default.
- W2896901616 cites W2099454382 @default.
- W2896901616 cites W2103614420 @default.
- W2896901616 cites W2109655672 @default.
- W2896901616 cites W2112796928 @default.
- W2896901616 cites W2119191234 @default.
- W2896901616 cites W2126105956 @default.
- W2896901616 cites W2135293965 @default.
- W2896901616 cites W2140190241 @default.
- W2896901616 cites W2148143831 @default.
- W2896901616 cites W2155851694 @default.
- W2896901616 cites W2350179566 @default.
- W2896901616 cites W2561820719 @default.
- W2896901616 cites W39416996 @default.
- W2896901616 cites W85350352 @default.
- W2896901616 doi "https://doi.org/10.1109/ijcnn.2018.8489423" @default.
- W2896901616 hasPublicationYear "2018" @default.
- W2896901616 type Work @default.
- W2896901616 sameAs 2896901616 @default.
- W2896901616 citedByCount "4" @default.
- W2896901616 countsByYear W28969016162019 @default.
- W2896901616 countsByYear W28969016162020 @default.
- W2896901616 countsByYear W28969016162022 @default.
- W2896901616 crossrefType "proceedings-article" @default.
- W2896901616 hasAuthorship W2896901616A5003216180 @default.
- W2896901616 hasAuthorship W2896901616A5014594358 @default.
- W2896901616 hasAuthorship W2896901616A5049786535 @default.
- W2896901616 hasAuthorship W2896901616A5050722957 @default.
- W2896901616 hasAuthorship W2896901616A5062579246 @default.
- W2896901616 hasAuthorship W2896901616A5064508238 @default.
- W2896901616 hasAuthorship W2896901616A5087162817 @default.
- W2896901616 hasAuthorship W2896901616A5090973825 @default.
- W2896901616 hasConcept C108583219 @default.
- W2896901616 hasConcept C119857082 @default.
- W2896901616 hasConcept C121332964 @default.
- W2896901616 hasConcept C124101348 @default.
- W2896901616 hasConcept C127413603 @default.
- W2896901616 hasConcept C153180895 @default.
- W2896901616 hasConcept C154945302 @default.
- W2896901616 hasConcept C168167062 @default.
- W2896901616 hasConcept C201995342 @default.
- W2896901616 hasConcept C2780451532 @default.
- W2896901616 hasConcept C41008148 @default.
- W2896901616 hasConcept C45942800 @default.
- W2896901616 hasConcept C50644808 @default.
- W2896901616 hasConcept C52622490 @default.
- W2896901616 hasConcept C81363708 @default.
- W2896901616 hasConcept C89600930 @default.
- W2896901616 hasConcept C97355855 @default.
- W2896901616 hasConceptScore W2896901616C108583219 @default.
- W2896901616 hasConceptScore W2896901616C119857082 @default.
- W2896901616 hasConceptScore W2896901616C121332964 @default.
- W2896901616 hasConceptScore W2896901616C124101348 @default.
- W2896901616 hasConceptScore W2896901616C127413603 @default.
- W2896901616 hasConceptScore W2896901616C153180895 @default.
- W2896901616 hasConceptScore W2896901616C154945302 @default.
- W2896901616 hasConceptScore W2896901616C168167062 @default.
- W2896901616 hasConceptScore W2896901616C201995342 @default.
- W2896901616 hasConceptScore W2896901616C2780451532 @default.
- W2896901616 hasConceptScore W2896901616C41008148 @default.
- W2896901616 hasConceptScore W2896901616C45942800 @default.
- W2896901616 hasConceptScore W2896901616C50644808 @default.
- W2896901616 hasConceptScore W2896901616C52622490 @default.
- W2896901616 hasConceptScore W2896901616C81363708 @default.
- W2896901616 hasConceptScore W2896901616C89600930 @default.
- W2896901616 hasConceptScore W2896901616C97355855 @default.
- W2896901616 hasLocation W28969016161 @default.
- W2896901616 hasOpenAccess W2896901616 @default.
- W2896901616 hasPrimaryLocation W28969016161 @default.
- W2896901616 hasRelatedWork W2342591535 @default.
- W2896901616 hasRelatedWork W2732542196 @default.
- W2896901616 hasRelatedWork W2733060750 @default.
- W2896901616 hasRelatedWork W2762006829 @default.
- W2896901616 hasRelatedWork W2773120646 @default.
- W2896901616 hasRelatedWork W2800691917 @default.