Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896903354> ?p ?o ?g. }
- W2896903354 endingPage "50" @default.
- W2896903354 startingPage "40" @default.
- W2896903354 abstract "Hepatic granuloma develops in the early stage of liver cirrhosis which can seriously injury liver health. At present, the assessment of medical microscopic images is necessary for various diseases and the exploiting of artificial intelligence technology to assist pathology doctors in pre-diagnosis is the trend of future medical development. In this article, we try to classify mice liver microscopic images of normal, granuloma-fibrosis1 and granuloma-fibrosis2, using convolutional neural networks (CNNs) and two conventional machine learning methods: support vector machine (SVM) and random forest (RF). On account of the included small dataset of 30 mice liver microscopic images, the proposed work included a preprocessing stage to deal with the problem of insufficient image number, which included the cropping of the original microscopic images to small patches, and the disorderly recombination after cropping and labeling the cropped patches In addition, recognizable texture features are extracted and selected using gray the level co-occurrence matrix (GLCM), local binary pattern (LBP) and Pearson correlation coefficient (PCC), respectively. The results established a classification accuracy of 82.78% of the proposed CNN based classifiers to classify 3 types of images. In addition, the confusion matrix figures out that the accuracy of the classification results using the proposed CNNs based classifiers for the normal class, granuloma-fibrosis1, and granuloma-fibrosis2 were 92.5%, 76.67%, and 79.17%, respectively. The comparative study of the proposed CNN based classifier and the SVM and RF proved the superiority of the CNNs showing its promising performance for clinical cases." @default.
- W2896903354 created "2018-10-26" @default.
- W2896903354 creator A5000975435 @default.
- W2896903354 creator A5027736728 @default.
- W2896903354 creator A5030917048 @default.
- W2896903354 creator A5035130915 @default.
- W2896903354 creator A5037566676 @default.
- W2896903354 creator A5056546246 @default.
- W2896903354 creator A5068271733 @default.
- W2896903354 creator A5079594267 @default.
- W2896903354 creator A5083741753 @default.
- W2896903354 date "2019-01-01" @default.
- W2896903354 modified "2023-10-06" @default.
- W2896903354 title "Classification of mice hepatic granuloma microscopic images based on a deep convolutional neural network" @default.
- W2896903354 cites W2007440415 @default.
- W2896903354 cites W2013885787 @default.
- W2896903354 cites W2155893237 @default.
- W2896903354 cites W2163352848 @default.
- W2896903354 cites W2272831686 @default.
- W2896903354 cites W2282915343 @default.
- W2896903354 cites W2343115719 @default.
- W2896903354 cites W2504150216 @default.
- W2896903354 cites W2514628397 @default.
- W2896903354 cites W2517395172 @default.
- W2896903354 cites W2553626825 @default.
- W2896903354 cites W2578388616 @default.
- W2896903354 cites W2581082771 @default.
- W2896903354 cites W2592062770 @default.
- W2896903354 cites W2597882924 @default.
- W2896903354 cites W2601068018 @default.
- W2896903354 cites W2604162004 @default.
- W2896903354 cites W2615751500 @default.
- W2896903354 cites W2616962113 @default.
- W2896903354 cites W2622826443 @default.
- W2896903354 cites W2623880299 @default.
- W2896903354 cites W2624616278 @default.
- W2896903354 cites W2770511975 @default.
- W2896903354 cites W2776574209 @default.
- W2896903354 cites W2799687766 @default.
- W2896903354 cites W2810767764 @default.
- W2896903354 doi "https://doi.org/10.1016/j.asoc.2018.10.006" @default.
- W2896903354 hasPublicationYear "2019" @default.
- W2896903354 type Work @default.
- W2896903354 sameAs 2896903354 @default.
- W2896903354 citedByCount "47" @default.
- W2896903354 countsByYear W28969033542018 @default.
- W2896903354 countsByYear W28969033542019 @default.
- W2896903354 countsByYear W28969033542020 @default.
- W2896903354 countsByYear W28969033542021 @default.
- W2896903354 countsByYear W28969033542022 @default.
- W2896903354 countsByYear W28969033542023 @default.
- W2896903354 crossrefType "journal-article" @default.
- W2896903354 hasAuthorship W2896903354A5000975435 @default.
- W2896903354 hasAuthorship W2896903354A5027736728 @default.
- W2896903354 hasAuthorship W2896903354A5030917048 @default.
- W2896903354 hasAuthorship W2896903354A5035130915 @default.
- W2896903354 hasAuthorship W2896903354A5037566676 @default.
- W2896903354 hasAuthorship W2896903354A5056546246 @default.
- W2896903354 hasAuthorship W2896903354A5068271733 @default.
- W2896903354 hasAuthorship W2896903354A5079594267 @default.
- W2896903354 hasAuthorship W2896903354A5083741753 @default.
- W2896903354 hasBestOaLocation W28969033542 @default.
- W2896903354 hasConcept C105795698 @default.
- W2896903354 hasConcept C115961682 @default.
- W2896903354 hasConcept C12267149 @default.
- W2896903354 hasConcept C138602881 @default.
- W2896903354 hasConcept C142724271 @default.
- W2896903354 hasConcept C153180895 @default.
- W2896903354 hasConcept C154945302 @default.
- W2896903354 hasConcept C160633673 @default.
- W2896903354 hasConcept C169258074 @default.
- W2896903354 hasConcept C2780140890 @default.
- W2896903354 hasConcept C2985861186 @default.
- W2896903354 hasConcept C33923547 @default.
- W2896903354 hasConcept C34736171 @default.
- W2896903354 hasConcept C41008148 @default.
- W2896903354 hasConcept C50644808 @default.
- W2896903354 hasConcept C53533937 @default.
- W2896903354 hasConcept C55078378 @default.
- W2896903354 hasConcept C71924100 @default.
- W2896903354 hasConcept C75294576 @default.
- W2896903354 hasConcept C81363708 @default.
- W2896903354 hasConcept C87335442 @default.
- W2896903354 hasConcept C95623464 @default.
- W2896903354 hasConceptScore W2896903354C105795698 @default.
- W2896903354 hasConceptScore W2896903354C115961682 @default.
- W2896903354 hasConceptScore W2896903354C12267149 @default.
- W2896903354 hasConceptScore W2896903354C138602881 @default.
- W2896903354 hasConceptScore W2896903354C142724271 @default.
- W2896903354 hasConceptScore W2896903354C153180895 @default.
- W2896903354 hasConceptScore W2896903354C154945302 @default.
- W2896903354 hasConceptScore W2896903354C160633673 @default.
- W2896903354 hasConceptScore W2896903354C169258074 @default.
- W2896903354 hasConceptScore W2896903354C2780140890 @default.
- W2896903354 hasConceptScore W2896903354C2985861186 @default.
- W2896903354 hasConceptScore W2896903354C33923547 @default.
- W2896903354 hasConceptScore W2896903354C34736171 @default.
- W2896903354 hasConceptScore W2896903354C41008148 @default.