Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896905879> ?p ?o ?g. }
- W2896905879 endingPage "19" @default.
- W2896905879 startingPage "1" @default.
- W2896905879 abstract "In coal mining industry, the running state of mine ventilators plays an extremely significant role for the safe and reliable operation of various industrial productions. To guarantee the better reliability, safety, and economy of mine ventilators, in view of early detection and effective fault diagnosis of mechanical faults which could prevent unscheduled downtime and minimize maintenance fees, it is imperative to construct some viable mathematical models for mine ventilator fault diagnosis. In this article, we plan to establish a data-based mine ventilator fault diagnosis method to handle situations where engineers are absent or they are incapable of coming to a conclusion from multisource data. In the process of building the mine ventilator fault diagnosis model, considering that probabilistic rough sets (PRSs) could reduce the errors triggered by incompleteness, inconsistency, and inaccuracy without needing any additional assumptions and Pythagorean fuzzy multigranulation rough sets (PF MGRSs) over the two universes’ model could effectively handle data representation, fusion, and analysis issues, we generalize the existing PF MGRSs over the two universes’ model to the PRS setting, as well as to further establish a novel model named Pythagorean fuzzy multigranulation probabilistic rough sets (PF MG-PRSs) over two universes. In the granular computing paradigm, three types of PF MG-PRSs over two universes based on the risk attitude of engineers are proposed at first. Afterwards, several basic propositions of the newly proposed model are explored. Moreover, a PF multigranulation probabilistic model for mine ventilator fault diagnosis based on PF MG-PRSs over two universes is investigated. At last, a real-world case study of dealing with a mine ventilator fault diagnosis problem is given to illustrate the practicality of the presented model, and a validity test, a sensitivity analysis, and a comparison analysis are further explored to demonstrate the effectiveness of the presented model." @default.
- W2896905879 created "2018-10-26" @default.
- W2896905879 creator A5000401287 @default.
- W2896905879 creator A5005267550 @default.
- W2896905879 creator A5048442250 @default.
- W2896905879 creator A5074521284 @default.
- W2896905879 date "2018-10-14" @default.
- W2896905879 modified "2023-10-17" @default.
- W2896905879 title "A Pythagorean Fuzzy Multigranulation Probabilistic Model for Mine Ventilator Fault Diagnosis" @default.
- W2896905879 cites W1470723969 @default.
- W2896905879 cites W1606022329 @default.
- W2896905879 cites W1668569279 @default.
- W2896905879 cites W1704544815 @default.
- W2896905879 cites W1829951598 @default.
- W2896905879 cites W1963531044 @default.
- W2896905879 cites W1969463949 @default.
- W2896905879 cites W1979378303 @default.
- W2896905879 cites W1980564456 @default.
- W2896905879 cites W1997362234 @default.
- W2896905879 cites W2001692054 @default.
- W2896905879 cites W2005745102 @default.
- W2896905879 cites W2006873874 @default.
- W2896905879 cites W2013932252 @default.
- W2896905879 cites W202198668 @default.
- W2896905879 cites W2028095785 @default.
- W2896905879 cites W2033415298 @default.
- W2896905879 cites W2038166912 @default.
- W2896905879 cites W2046608663 @default.
- W2896905879 cites W2047225968 @default.
- W2896905879 cites W2070813883 @default.
- W2896905879 cites W2083521084 @default.
- W2896905879 cites W2084718108 @default.
- W2896905879 cites W2104077967 @default.
- W2896905879 cites W2107566963 @default.
- W2896905879 cites W2141372844 @default.
- W2896905879 cites W2170755382 @default.
- W2896905879 cites W2172368975 @default.
- W2896905879 cites W2176298897 @default.
- W2896905879 cites W2215524969 @default.
- W2896905879 cites W2272142993 @default.
- W2896905879 cites W2343561906 @default.
- W2896905879 cites W2345854887 @default.
- W2896905879 cites W2346494717 @default.
- W2896905879 cites W2346610881 @default.
- W2896905879 cites W2515748156 @default.
- W2896905879 cites W2542749295 @default.
- W2896905879 cites W2549504134 @default.
- W2896905879 cites W2554676782 @default.
- W2896905879 cites W2586356223 @default.
- W2896905879 cites W2607909519 @default.
- W2896905879 cites W2732674005 @default.
- W2896905879 cites W2739534728 @default.
- W2896905879 cites W2756350556 @default.
- W2896905879 cites W2764281603 @default.
- W2896905879 cites W2765367188 @default.
- W2896905879 cites W2772332129 @default.
- W2896905879 cites W2772794611 @default.
- W2896905879 cites W2776909601 @default.
- W2896905879 cites W2782087892 @default.
- W2896905879 cites W2788343515 @default.
- W2896905879 cites W2791378063 @default.
- W2896905879 cites W2791638390 @default.
- W2896905879 cites W2800633779 @default.
- W2896905879 cites W2800724825 @default.
- W2896905879 cites W2803228996 @default.
- W2896905879 cites W2803341335 @default.
- W2896905879 cites W2809266330 @default.
- W2896905879 cites W2890144670 @default.
- W2896905879 cites W2997864005 @default.
- W2896905879 cites W4211007335 @default.
- W2896905879 cites W4255833381 @default.
- W2896905879 cites W4376595429 @default.
- W2896905879 cites W591364140 @default.
- W2896905879 doi "https://doi.org/10.1155/2018/7125931" @default.
- W2896905879 hasPublicationYear "2018" @default.
- W2896905879 type Work @default.
- W2896905879 sameAs 2896905879 @default.
- W2896905879 citedByCount "10" @default.
- W2896905879 countsByYear W28969058792019 @default.
- W2896905879 countsByYear W28969058792020 @default.
- W2896905879 countsByYear W28969058792021 @default.
- W2896905879 countsByYear W28969058792022 @default.
- W2896905879 countsByYear W28969058792023 @default.
- W2896905879 crossrefType "journal-article" @default.
- W2896905879 hasAuthorship W2896905879A5000401287 @default.
- W2896905879 hasAuthorship W2896905879A5005267550 @default.
- W2896905879 hasAuthorship W2896905879A5048442250 @default.
- W2896905879 hasAuthorship W2896905879A5074521284 @default.
- W2896905879 hasBestOaLocation W28969058791 @default.
- W2896905879 hasConcept C100461760 @default.
- W2896905879 hasConcept C111012933 @default.
- W2896905879 hasConcept C111919701 @default.
- W2896905879 hasConcept C124101348 @default.
- W2896905879 hasConcept C127313418 @default.
- W2896905879 hasConcept C127413603 @default.
- W2896905879 hasConcept C154945302 @default.
- W2896905879 hasConcept C165205528 @default.
- W2896905879 hasConcept C175551986 @default.