Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896908315> ?p ?o ?g. }
- W2896908315 abstract "The research and improvement of methods to be used for crop monitoring are currently major challenges, especially for radar images due to their speckle noise nature. The European Space Agency’s (ESA) Sentinel1 constellation provides synthetic aperture radar (SAR) images coverage with a 6 days revisit period at a high spatial resolution of pixel spacing 20 m. Sentinel-1 data are considerable useful, as they provide valuable information of the vegetation cover. The objective of this paper is to provide a better understanding of the capabilities of Sentinel-1 radar images for rice height and dry biomass retrievals. To do this, we train Sentinel1 data against ground measurements with classical machine learning techniques (Multiple Linear Regression (MLR), Support Vector Regression (SVR) and Random Forest (RF)) to estimate rice height and dry biomass. The study is carried out on a multi-temporal Sentinel-1 dataset acquired from May 2017 to September 2017 over the Camargue region, southern France. The ground in-situ measurements were made in the same period to collect rice height and dry biomass over 11 rice fields. The images were processed in order to produce an intensity radar data stack in C-band including dual-polarization VV (Vertical receive and Vertical transmit) and VH (Vertical receive and Horizontal transmit) data. We found that non-parametric methods (SVR and RF) had a better performance over the parametric MLR method for rice biophysical parameter retrievals. The accuracy of rice height estimation showed that rice height retrieval was strongly correlated to the in-situ rice height from dual-polarization, in which Random Forest yielded the best performance with correlation coefficient R<sup>2</sup> = 0.92 and the root mean square error (RMSE) 16% (7.9 cm). In addition, we demonstrated that the correlation of Sentinel-1 signal to the biomass was also very high in VH polarization with R<sup>2</sup> = 0.9 and RMSE = 18% (162 g.m<sup>−2</sup> ) (with Random Forest method). Such results indicate that the highly qualified Sentinel-1 radar data could be well exploited for rice biomass and height retrieval and they could be used for operational tasks" @default.
- W2896908315 created "2018-10-26" @default.
- W2896908315 creator A5005595654 @default.
- W2896908315 creator A5009185550 @default.
- W2896908315 creator A5028612066 @default.
- W2896908315 creator A5043605127 @default.
- W2896908315 creator A5065161398 @default.
- W2896908315 creator A5066811722 @default.
- W2896908315 creator A5076394373 @default.
- W2896908315 date "2018-10-10" @default.
- W2896908315 modified "2023-10-18" @default.
- W2896908315 title "Rice height and biomass estimations using multitemporal SAR Sentinel-1: Camargue case study" @default.
- W2896908315 cites W1984168249 @default.
- W2896908315 cites W1984670836 @default.
- W2896908315 cites W2003323862 @default.
- W2896908315 cites W2009707410 @default.
- W2896908315 cites W2018627383 @default.
- W2896908315 cites W2021711669 @default.
- W2896908315 cites W2036282733 @default.
- W2896908315 cites W2038622951 @default.
- W2896908315 cites W2045877890 @default.
- W2896908315 cites W2056435747 @default.
- W2896908315 cites W2058723831 @default.
- W2896908315 cites W2058848462 @default.
- W2896908315 cites W2068427983 @default.
- W2896908315 cites W2074594633 @default.
- W2896908315 cites W2076208593 @default.
- W2896908315 cites W2096352448 @default.
- W2896908315 cites W2109090765 @default.
- W2896908315 cites W2112206513 @default.
- W2896908315 cites W2112835976 @default.
- W2896908315 cites W2119295421 @default.
- W2896908315 cites W2130470461 @default.
- W2896908315 cites W2132671857 @default.
- W2896908315 cites W2133941557 @default.
- W2896908315 cites W2151250213 @default.
- W2896908315 cites W2152429819 @default.
- W2896908315 cites W2154964173 @default.
- W2896908315 cites W2171688314 @default.
- W2896908315 cites W2233187166 @default.
- W2896908315 cites W2325074942 @default.
- W2896908315 cites W2465750332 @default.
- W2896908315 cites W2532266163 @default.
- W2896908315 cites W2585309444 @default.
- W2896908315 cites W2593173520 @default.
- W2896908315 cites W2611997817 @default.
- W2896908315 cites W2747000343 @default.
- W2896908315 cites W2767166343 @default.
- W2896908315 cites W2767268646 @default.
- W2896908315 cites W2775018618 @default.
- W2896908315 cites W2789665835 @default.
- W2896908315 cites W2803256204 @default.
- W2896908315 cites W2886493749 @default.
- W2896908315 cites W2911964244 @default.
- W2896908315 cites W40738545 @default.
- W2896908315 cites W4235748750 @default.
- W2896908315 cites W4253790971 @default.
- W2896908315 doi "https://doi.org/10.1117/12.2325174" @default.
- W2896908315 hasPublicationYear "2018" @default.
- W2896908315 type Work @default.
- W2896908315 sameAs 2896908315 @default.
- W2896908315 citedByCount "1" @default.
- W2896908315 countsByYear W28969083152023 @default.
- W2896908315 crossrefType "proceedings-article" @default.
- W2896908315 hasAuthorship W2896908315A5005595654 @default.
- W2896908315 hasAuthorship W2896908315A5009185550 @default.
- W2896908315 hasAuthorship W2896908315A5028612066 @default.
- W2896908315 hasAuthorship W2896908315A5043605127 @default.
- W2896908315 hasAuthorship W2896908315A5065161398 @default.
- W2896908315 hasAuthorship W2896908315A5066811722 @default.
- W2896908315 hasAuthorship W2896908315A5076394373 @default.
- W2896908315 hasBestOaLocation W28969083152 @default.
- W2896908315 hasConcept C154945302 @default.
- W2896908315 hasConcept C205372480 @default.
- W2896908315 hasConcept C205649164 @default.
- W2896908315 hasConcept C39432304 @default.
- W2896908315 hasConcept C41008148 @default.
- W2896908315 hasConcept C62649853 @default.
- W2896908315 hasConcept C87360688 @default.
- W2896908315 hasConceptScore W2896908315C154945302 @default.
- W2896908315 hasConceptScore W2896908315C205372480 @default.
- W2896908315 hasConceptScore W2896908315C205649164 @default.
- W2896908315 hasConceptScore W2896908315C39432304 @default.
- W2896908315 hasConceptScore W2896908315C41008148 @default.
- W2896908315 hasConceptScore W2896908315C62649853 @default.
- W2896908315 hasConceptScore W2896908315C87360688 @default.
- W2896908315 hasLocation W28969083151 @default.
- W2896908315 hasLocation W28969083152 @default.
- W2896908315 hasLocation W28969083153 @default.
- W2896908315 hasOpenAccess W2896908315 @default.
- W2896908315 hasPrimaryLocation W28969083151 @default.
- W2896908315 hasRelatedWork W2008518276 @default.
- W2896908315 hasRelatedWork W2152662390 @default.
- W2896908315 hasRelatedWork W2358668433 @default.
- W2896908315 hasRelatedWork W2369060955 @default.
- W2896908315 hasRelatedWork W2376932109 @default.
- W2896908315 hasRelatedWork W2382290278 @default.
- W2896908315 hasRelatedWork W2390279801 @default.
- W2896908315 hasRelatedWork W2748952813 @default.
- W2896908315 hasRelatedWork W2899084033 @default.