Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896912573> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2896912573 endingPage "1769" @default.
- W2896912573 startingPage "1769" @default.
- W2896912573 abstract "In oceanic remote sensing, large discrete linear hydrophone arrays are usually utilized to enhance the signal-to-noise ratio (SNR) by means of beamforming that attenuates noise coming from the directions outside the target direction. Although the widely adopted delay-and-sum (DS) and filter-and-sum (FS) beamforming techniques can improve the performance of linear hydrophone arrays in some scenarios, both DS and FS methods have limited adaptability to the changing oceanic environments especially with spatially correlated noise. Moreover, these beamforming techniques aims to optimize the SNR, which is not completely consistent with some objectives such as target recognition. In this work, a neural network adaptive beamforming framework for an uniformly-spaced linear hydrophone array is proposed to make use of the large-scale array signals and address the above issues. In particular, an architecture consists of temporal convolutional neural networks is designed to predict the beamforming filter coefficients in time domain by taking the raw multi-channel waveforms of sound pressure as the input. The filter prediction networks are also jointly trained with a convolutional neural network (CNN) based classification model with the purpose of increasing the target recognition accuracy. The proposed approach is validated by experiments carried out in the south coastal waters of China." @default.
- W2896912573 created "2018-10-26" @default.
- W2896912573 creator A5015810830 @default.
- W2896912573 creator A5044548403 @default.
- W2896912573 creator A5048669866 @default.
- W2896912573 creator A5070475244 @default.
- W2896912573 creator A5075830709 @default.
- W2896912573 creator A5084134001 @default.
- W2896912573 date "2018-09-01" @default.
- W2896912573 modified "2023-10-12" @default.
- W2896912573 title "Adaptive beamforming for uniformly-spaced linear hydrophone array using temporal convolutional neural networks" @default.
- W2896912573 doi "https://doi.org/10.1121/1.5067824" @default.
- W2896912573 hasPublicationYear "2018" @default.
- W2896912573 type Work @default.
- W2896912573 sameAs 2896912573 @default.
- W2896912573 citedByCount "0" @default.
- W2896912573 crossrefType "journal-article" @default.
- W2896912573 hasAuthorship W2896912573A5015810830 @default.
- W2896912573 hasAuthorship W2896912573A5044548403 @default.
- W2896912573 hasAuthorship W2896912573A5048669866 @default.
- W2896912573 hasAuthorship W2896912573A5070475244 @default.
- W2896912573 hasAuthorship W2896912573A5075830709 @default.
- W2896912573 hasAuthorship W2896912573A5084134001 @default.
- W2896912573 hasConcept C106131492 @default.
- W2896912573 hasConcept C115961682 @default.
- W2896912573 hasConcept C121332964 @default.
- W2896912573 hasConcept C127162648 @default.
- W2896912573 hasConcept C139722471 @default.
- W2896912573 hasConcept C154945302 @default.
- W2896912573 hasConcept C24890656 @default.
- W2896912573 hasConcept C2776328434 @default.
- W2896912573 hasConcept C31972630 @default.
- W2896912573 hasConcept C33378366 @default.
- W2896912573 hasConcept C41008148 @default.
- W2896912573 hasConcept C54197355 @default.
- W2896912573 hasConcept C76155785 @default.
- W2896912573 hasConcept C81363708 @default.
- W2896912573 hasConcept C99498987 @default.
- W2896912573 hasConceptScore W2896912573C106131492 @default.
- W2896912573 hasConceptScore W2896912573C115961682 @default.
- W2896912573 hasConceptScore W2896912573C121332964 @default.
- W2896912573 hasConceptScore W2896912573C127162648 @default.
- W2896912573 hasConceptScore W2896912573C139722471 @default.
- W2896912573 hasConceptScore W2896912573C154945302 @default.
- W2896912573 hasConceptScore W2896912573C24890656 @default.
- W2896912573 hasConceptScore W2896912573C2776328434 @default.
- W2896912573 hasConceptScore W2896912573C31972630 @default.
- W2896912573 hasConceptScore W2896912573C33378366 @default.
- W2896912573 hasConceptScore W2896912573C41008148 @default.
- W2896912573 hasConceptScore W2896912573C54197355 @default.
- W2896912573 hasConceptScore W2896912573C76155785 @default.
- W2896912573 hasConceptScore W2896912573C81363708 @default.
- W2896912573 hasConceptScore W2896912573C99498987 @default.
- W2896912573 hasIssue "3_Supplement" @default.
- W2896912573 hasLocation W28969125731 @default.
- W2896912573 hasOpenAccess W2896912573 @default.
- W2896912573 hasPrimaryLocation W28969125731 @default.
- W2896912573 hasRelatedWork W1964971699 @default.
- W2896912573 hasRelatedWork W1990127707 @default.
- W2896912573 hasRelatedWork W2001225558 @default.
- W2896912573 hasRelatedWork W2044785102 @default.
- W2896912573 hasRelatedWork W2079550015 @default.
- W2896912573 hasRelatedWork W2624584753 @default.
- W2896912573 hasRelatedWork W2896912573 @default.
- W2896912573 hasRelatedWork W3147069899 @default.
- W2896912573 hasRelatedWork W636053046 @default.
- W2896912573 hasRelatedWork W230540540 @default.
- W2896912573 hasVolume "144" @default.
- W2896912573 isParatext "false" @default.
- W2896912573 isRetracted "false" @default.
- W2896912573 magId "2896912573" @default.
- W2896912573 workType "article" @default.