Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896912730> ?p ?o ?g. }
- W2896912730 endingPage "120" @default.
- W2896912730 startingPage "110" @default.
- W2896912730 abstract "Abstract In this article, we propose a new edge detecting method based on the transform coefficients obtained by a point spread function constructed out of Chebyshev's orthogonal polynomials. This edge detector finds edges similar to that of Prewitt and Roberts but is robust against additive and multiplicative noises. We also propose a new scheme to extract brain portion from the magnetic resonance images (MRI) of human head scan by making use of the of the new edge detector. The proposed scheme involves edge detection, morphological operations, and largest connected component analysis. Experiments conducted by applying the proposed scheme on 19 volumes of MRI collected from Internet Brain Segmentation Repository (IBSR) show that the proposed brain extraction scheme performed better than the popular Brain Extraction Tool (BET). The performance of the proposed scheme is measured by computing the Dice coefficient (D) and Jaccard similarity index (J). The proposed method produced a value of 0.9068 for D and 0.8321 for J." @default.
- W2896912730 created "2018-10-26" @default.
- W2896912730 creator A5013840635 @default.
- W2896912730 creator A5029214642 @default.
- W2896912730 creator A5034369403 @default.
- W2896912730 creator A5039874255 @default.
- W2896912730 creator A5060599594 @default.
- W2896912730 date "2018-10-13" @default.
- W2896912730 modified "2023-10-16" @default.
- W2896912730 title "Edge detection using Chebyshev's orthogonal polynomial and brain extraction from magnetic resonance images of human head" @default.
- W2896912730 cites W1641498739 @default.
- W2896912730 cites W1963558878 @default.
- W2896912730 cites W1963926989 @default.
- W2896912730 cites W1971091026 @default.
- W2896912730 cites W1989806566 @default.
- W2896912730 cites W2001862232 @default.
- W2896912730 cites W2003370853 @default.
- W2896912730 cites W2012899556 @default.
- W2896912730 cites W2019683809 @default.
- W2896912730 cites W2045596018 @default.
- W2896912730 cites W2046657502 @default.
- W2896912730 cites W2047568922 @default.
- W2896912730 cites W2049339733 @default.
- W2896912730 cites W2055079622 @default.
- W2896912730 cites W2057241917 @default.
- W2896912730 cites W2071881327 @default.
- W2896912730 cites W207373900 @default.
- W2896912730 cites W2076608722 @default.
- W2896912730 cites W2091274498 @default.
- W2896912730 cites W2102653483 @default.
- W2896912730 cites W2102860796 @default.
- W2896912730 cites W2107287771 @default.
- W2896912730 cites W2107574526 @default.
- W2896912730 cites W2111128326 @default.
- W2896912730 cites W2123402141 @default.
- W2896912730 cites W2123498585 @default.
- W2896912730 cites W2128051097 @default.
- W2896912730 cites W2130722560 @default.
- W2896912730 cites W2132513126 @default.
- W2896912730 cites W2145023731 @default.
- W2896912730 cites W2145661921 @default.
- W2896912730 cites W2151050383 @default.
- W2896912730 cites W2158662055 @default.
- W2896912730 cites W2164468282 @default.
- W2896912730 cites W2167290407 @default.
- W2896912730 cites W2169952919 @default.
- W2896912730 cites W2203963179 @default.
- W2896912730 cites W22745672 @default.
- W2896912730 cites W2312348481 @default.
- W2896912730 cites W2323564945 @default.
- W2896912730 cites W2327865102 @default.
- W2896912730 cites W2426407958 @default.
- W2896912730 doi "https://doi.org/10.1002/ima.22297" @default.
- W2896912730 hasPublicationYear "2018" @default.
- W2896912730 type Work @default.
- W2896912730 sameAs 2896912730 @default.
- W2896912730 citedByCount "6" @default.
- W2896912730 countsByYear W28969127302019 @default.
- W2896912730 countsByYear W28969127302021 @default.
- W2896912730 countsByYear W28969127302022 @default.
- W2896912730 countsByYear W28969127302023 @default.
- W2896912730 crossrefType "journal-article" @default.
- W2896912730 hasAuthorship W2896912730A5013840635 @default.
- W2896912730 hasAuthorship W2896912730A5029214642 @default.
- W2896912730 hasAuthorship W2896912730A5034369403 @default.
- W2896912730 hasAuthorship W2896912730A5039874255 @default.
- W2896912730 hasAuthorship W2896912730A5060599594 @default.
- W2896912730 hasConcept C103278499 @default.
- W2896912730 hasConcept C11413529 @default.
- W2896912730 hasConcept C115961682 @default.
- W2896912730 hasConcept C129785596 @default.
- W2896912730 hasConcept C134306372 @default.
- W2896912730 hasConcept C14705441 @default.
- W2896912730 hasConcept C153180895 @default.
- W2896912730 hasConcept C154945302 @default.
- W2896912730 hasConcept C155012704 @default.
- W2896912730 hasConcept C193536780 @default.
- W2896912730 hasConcept C203519979 @default.
- W2896912730 hasConcept C31972630 @default.
- W2896912730 hasConcept C33923547 @default.
- W2896912730 hasConcept C41008148 @default.
- W2896912730 hasConcept C76155785 @default.
- W2896912730 hasConcept C89600930 @default.
- W2896912730 hasConcept C9417928 @default.
- W2896912730 hasConcept C94915269 @default.
- W2896912730 hasConceptScore W2896912730C103278499 @default.
- W2896912730 hasConceptScore W2896912730C11413529 @default.
- W2896912730 hasConceptScore W2896912730C115961682 @default.
- W2896912730 hasConceptScore W2896912730C129785596 @default.
- W2896912730 hasConceptScore W2896912730C134306372 @default.
- W2896912730 hasConceptScore W2896912730C14705441 @default.
- W2896912730 hasConceptScore W2896912730C153180895 @default.
- W2896912730 hasConceptScore W2896912730C154945302 @default.
- W2896912730 hasConceptScore W2896912730C155012704 @default.
- W2896912730 hasConceptScore W2896912730C193536780 @default.
- W2896912730 hasConceptScore W2896912730C203519979 @default.
- W2896912730 hasConceptScore W2896912730C31972630 @default.
- W2896912730 hasConceptScore W2896912730C33923547 @default.