Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896913575> ?p ?o ?g. }
- W2896913575 endingPage "172" @default.
- W2896913575 startingPage "164" @default.
- W2896913575 abstract "In recent years, there has been an increasing interest in implementing artificial intelligence in radiation based multiphase flow meter systems. This study revolves around an approach in which the grey wolf optimization (GWO) algorithm was employed to train the artificial neural network (ANN), and a hybrid network called as the GWO-trained ANN was introduced to predict the volume fractions in a gas-oil-water multiphase flow system. After that, the obtained GWO-based neural network was employed to measure the volume fractions in the stratified three-phase flow, on the basis of a dual energy metering system including the 152Eu and 137Cs and one NaI detector. The first network was utilized to predict the oil and gas, the next one to predict the gas and water, and the last one to predict the water and oil volume fractions. In the next step, the GWO-based networks were trained based on numerically obtained data from MCNP-X code. The accuracy of the nets were evaluated and compared with each other. Based on the results, the best GWO-based net could predict the oil and gas volume fractions with the mean absolute percentage error of less than 0.8% and 0.4% for the testing and checking data, respectively." @default.
- W2896913575 created "2018-10-26" @default.
- W2896913575 creator A5000911580 @default.
- W2896913575 creator A5044358049 @default.
- W2896913575 creator A5045129644 @default.
- W2896913575 creator A5046045649 @default.
- W2896913575 date "2018-12-01" @default.
- W2896913575 modified "2023-10-18" @default.
- W2896913575 title "Enhancing the performance of a dual-energy gamma ray based three-phase flow meter with the help of grey wolf optimization algorithm" @default.
- W2896913575 cites W1008829334 @default.
- W2896913575 cites W1969658508 @default.
- W2896913575 cites W1982712695 @default.
- W2896913575 cites W1994110512 @default.
- W2896913575 cites W2002302337 @default.
- W2896913575 cites W2013672173 @default.
- W2896913575 cites W2023630074 @default.
- W2896913575 cites W2035082772 @default.
- W2896913575 cites W2037481461 @default.
- W2896913575 cites W2039681904 @default.
- W2896913575 cites W2045920571 @default.
- W2896913575 cites W2046435596 @default.
- W2896913575 cites W2061438946 @default.
- W2896913575 cites W2071437279 @default.
- W2896913575 cites W2088665942 @default.
- W2896913575 cites W2150103358 @default.
- W2896913575 cites W2172414120 @default.
- W2896913575 cites W2193692196 @default.
- W2896913575 cites W2288173420 @default.
- W2896913575 cites W2320950607 @default.
- W2896913575 cites W2335696099 @default.
- W2896913575 cites W2410163408 @default.
- W2896913575 cites W2414472952 @default.
- W2896913575 cites W2475321651 @default.
- W2896913575 cites W2531592927 @default.
- W2896913575 cites W2562646991 @default.
- W2896913575 cites W2564194003 @default.
- W2896913575 cites W2588182560 @default.
- W2896913575 cites W2592483684 @default.
- W2896913575 cites W2606777546 @default.
- W2896913575 cites W2746116459 @default.
- W2896913575 cites W2767386775 @default.
- W2896913575 cites W2789998565 @default.
- W2896913575 cites W2792277290 @default.
- W2896913575 cites W2800181823 @default.
- W2896913575 cites W2803596248 @default.
- W2896913575 cites W2884605149 @default.
- W2896913575 doi "https://doi.org/10.1016/j.flowmeasinst.2018.10.015" @default.
- W2896913575 hasPublicationYear "2018" @default.
- W2896913575 type Work @default.
- W2896913575 sameAs 2896913575 @default.
- W2896913575 citedByCount "53" @default.
- W2896913575 countsByYear W28969135752019 @default.
- W2896913575 countsByYear W28969135752020 @default.
- W2896913575 countsByYear W28969135752021 @default.
- W2896913575 countsByYear W28969135752022 @default.
- W2896913575 countsByYear W28969135752023 @default.
- W2896913575 crossrefType "journal-article" @default.
- W2896913575 hasAuthorship W2896913575A5000911580 @default.
- W2896913575 hasAuthorship W2896913575A5044358049 @default.
- W2896913575 hasAuthorship W2896913575A5045129644 @default.
- W2896913575 hasAuthorship W2896913575A5046045649 @default.
- W2896913575 hasConcept C105795698 @default.
- W2896913575 hasConcept C11413529 @default.
- W2896913575 hasConcept C121332964 @default.
- W2896913575 hasConcept C127413603 @default.
- W2896913575 hasConcept C1276947 @default.
- W2896913575 hasConcept C144308804 @default.
- W2896913575 hasConcept C151011524 @default.
- W2896913575 hasConcept C154945302 @default.
- W2896913575 hasConcept C186370098 @default.
- W2896913575 hasConcept C20556612 @default.
- W2896913575 hasConcept C2524010 @default.
- W2896913575 hasConcept C30905978 @default.
- W2896913575 hasConcept C33923547 @default.
- W2896913575 hasConcept C38349280 @default.
- W2896913575 hasConcept C39432304 @default.
- W2896913575 hasConcept C41008148 @default.
- W2896913575 hasConcept C44154836 @default.
- W2896913575 hasConcept C50644808 @default.
- W2896913575 hasConcept C62520636 @default.
- W2896913575 hasConcept C78519656 @default.
- W2896913575 hasConceptScore W2896913575C105795698 @default.
- W2896913575 hasConceptScore W2896913575C11413529 @default.
- W2896913575 hasConceptScore W2896913575C121332964 @default.
- W2896913575 hasConceptScore W2896913575C127413603 @default.
- W2896913575 hasConceptScore W2896913575C1276947 @default.
- W2896913575 hasConceptScore W2896913575C144308804 @default.
- W2896913575 hasConceptScore W2896913575C151011524 @default.
- W2896913575 hasConceptScore W2896913575C154945302 @default.
- W2896913575 hasConceptScore W2896913575C186370098 @default.
- W2896913575 hasConceptScore W2896913575C20556612 @default.
- W2896913575 hasConceptScore W2896913575C2524010 @default.
- W2896913575 hasConceptScore W2896913575C30905978 @default.
- W2896913575 hasConceptScore W2896913575C33923547 @default.
- W2896913575 hasConceptScore W2896913575C38349280 @default.
- W2896913575 hasConceptScore W2896913575C39432304 @default.
- W2896913575 hasConceptScore W2896913575C41008148 @default.
- W2896913575 hasConceptScore W2896913575C44154836 @default.