Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896916724> ?p ?o ?g. }
- W2896916724 endingPage "4703" @default.
- W2896916724 startingPage "4695" @default.
- W2896916724 abstract "At the early stages of the drug development process, thousands of compounds are synthesized in order to attain the best possible potency and pharmacokinetic properties. Once successful scaffolds are identified, large libraries of analogues are made, which is a challenging and time-consuming task. Recently, late stage functionalization (LSF) has become increasingly prominent since these reactions selectively functionalize C–H bonds, allowing to quickly produce analogues. Classical electrophilic aromatic halogenations are a powerful type of reaction in the LSF toolkit. However, the introduction of an electrophile in a regioselective manner on a drug-like molecule is a challenging task. Herein we present a machine learning model able to predict the reactive site of an electrophilic aromatic substitution with an accuracy of 93% (internal validation set). The model takes as input a SMILES of a compound and uses six quantum mechanics descriptors to identify its reactive site(s). On an external validation set, 90% of all molecules were correctly predicted." @default.
- W2896916724 created "2018-10-26" @default.
- W2896916724 creator A5007498431 @default.
- W2896916724 creator A5019776623 @default.
- W2896916724 creator A5081308550 @default.
- W2896916724 date "2018-10-18" @default.
- W2896916724 modified "2023-10-06" @default.
- W2896916724 title "A Predictive Tool for Electrophilic Aromatic Substitutions Using Machine Learning" @default.
- W2896916724 cites W1483608598 @default.
- W2896916724 cites W1956858148 @default.
- W2896916724 cites W1963688013 @default.
- W2896916724 cites W1974258007 @default.
- W2896916724 cites W1974455468 @default.
- W2896916724 cites W1976825482 @default.
- W2896916724 cites W1984976926 @default.
- W2896916724 cites W1985998106 @default.
- W2896916724 cites W2025804869 @default.
- W2896916724 cites W2026596966 @default.
- W2896916724 cites W2045371864 @default.
- W2896916724 cites W2056760113 @default.
- W2896916724 cites W2060835560 @default.
- W2896916724 cites W2069040311 @default.
- W2896916724 cites W2072380392 @default.
- W2896916724 cites W2075236392 @default.
- W2896916724 cites W2075275010 @default.
- W2896916724 cites W2075923379 @default.
- W2896916724 cites W2082167360 @default.
- W2896916724 cites W2089575398 @default.
- W2896916724 cites W2108581738 @default.
- W2896916724 cites W2117102279 @default.
- W2896916724 cites W2122439753 @default.
- W2896916724 cites W2139399189 @default.
- W2896916724 cites W2153484069 @default.
- W2896916724 cites W2160790360 @default.
- W2896916724 cites W2171830166 @default.
- W2896916724 cites W2325492496 @default.
- W2896916724 cites W2339051409 @default.
- W2896916724 cites W2381670272 @default.
- W2896916724 cites W2396220592 @default.
- W2896916724 cites W2540936530 @default.
- W2896916724 cites W2586136567 @default.
- W2896916724 cites W2594081393 @default.
- W2896916724 cites W2609472088 @default.
- W2896916724 cites W2622871661 @default.
- W2896916724 cites W2672234276 @default.
- W2896916724 cites W2763817162 @default.
- W2896916724 cites W2778314764 @default.
- W2896916724 cites W2784110056 @default.
- W2896916724 cites W2785942661 @default.
- W2896916724 cites W2789611126 @default.
- W2896916724 cites W2789890024 @default.
- W2896916724 cites W2794822175 @default.
- W2896916724 cites W4236362309 @default.
- W2896916724 doi "https://doi.org/10.1021/acs.joc.8b02270" @default.
- W2896916724 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30336024" @default.
- W2896916724 hasPublicationYear "2018" @default.
- W2896916724 type Work @default.
- W2896916724 sameAs 2896916724 @default.
- W2896916724 citedByCount "67" @default.
- W2896916724 countsByYear W28969167242019 @default.
- W2896916724 countsByYear W28969167242020 @default.
- W2896916724 countsByYear W28969167242021 @default.
- W2896916724 countsByYear W28969167242022 @default.
- W2896916724 countsByYear W28969167242023 @default.
- W2896916724 crossrefType "journal-article" @default.
- W2896916724 hasAuthorship W2896916724A5007498431 @default.
- W2896916724 hasAuthorship W2896916724A5019776623 @default.
- W2896916724 hasAuthorship W2896916724A5081308550 @default.
- W2896916724 hasConcept C122085161 @default.
- W2896916724 hasConcept C147597530 @default.
- W2896916724 hasConcept C161790260 @default.
- W2896916724 hasConcept C177264268 @default.
- W2896916724 hasConcept C178790620 @default.
- W2896916724 hasConcept C185592680 @default.
- W2896916724 hasConcept C199360897 @default.
- W2896916724 hasConcept C21951064 @default.
- W2896916724 hasConcept C2777965246 @default.
- W2896916724 hasConcept C41008148 @default.
- W2896916724 hasConcept C50027330 @default.
- W2896916724 hasConcept C55493867 @default.
- W2896916724 hasConcept C59759590 @default.
- W2896916724 hasConcept C74187038 @default.
- W2896916724 hasConcept C99726746 @default.
- W2896916724 hasConceptScore W2896916724C122085161 @default.
- W2896916724 hasConceptScore W2896916724C147597530 @default.
- W2896916724 hasConceptScore W2896916724C161790260 @default.
- W2896916724 hasConceptScore W2896916724C177264268 @default.
- W2896916724 hasConceptScore W2896916724C178790620 @default.
- W2896916724 hasConceptScore W2896916724C185592680 @default.
- W2896916724 hasConceptScore W2896916724C199360897 @default.
- W2896916724 hasConceptScore W2896916724C21951064 @default.
- W2896916724 hasConceptScore W2896916724C2777965246 @default.
- W2896916724 hasConceptScore W2896916724C41008148 @default.
- W2896916724 hasConceptScore W2896916724C50027330 @default.
- W2896916724 hasConceptScore W2896916724C55493867 @default.
- W2896916724 hasConceptScore W2896916724C59759590 @default.
- W2896916724 hasConceptScore W2896916724C74187038 @default.
- W2896916724 hasConceptScore W2896916724C99726746 @default.