Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896924809> ?p ?o ?g. }
- W2896924809 abstract "Distinguishing between meningeal-based and intra-axial lesions by means of magnetic resonance (MR) imaging findings may occasionally be challenging. Meningiomas and gliomas account for most of the total primary brain neoplasms in dogs, and differentiating between these two forms is mandatory in choosing the correct therapy. The aims of the present study are: 1) to determine the accuracy of a deep convolutional neural network (CNN, GoogleNet) in discriminating between meningiomas and gliomas in pre- and post-contrast T1 images and T2 images; 2) to develop an image classifier, based on the combination of CNN and MRI sequence displaying the highest accuracy, to predict whether a lesion is a meningioma or a glioma. Eighty cases with a final diagnosis of meningioma (n = 56) and glioma (n = 24) from two different institutions were included in the study. A pre-trained CNN was retrained on our data through a process called transfer learning. To evaluate CNN accuracy in the different imaging sequences, the dataset was divided into a training, a validation and a test set. The accuracy of the CNN was calculated on the test set. The combination between post-contrast T1 images and CNN was chosen in developing the image classifier (trCNN). Ten images from challenging cases were excluded from the database in order to test trCNN accuracy; the trCNN was trained on the remainder of the dataset of post-contrast T1 images, and correctly classified all the selected images. To compensate for the imbalance between meningiomas and gliomas in the dataset, the Matthews correlation coefficient (MCC) was also calculated. The trCNN showed an accuracy of 94% (MCC = 0.88) on post-contrast T1 images, 91% (MCC = 0.81) on pre-contrast T1-images and 90% (MCC = 0.8) on T2 images. The developed trCNN could be a reliable tool in distinguishing between different meningiomas and gliomas from MR images." @default.
- W2896924809 created "2018-10-26" @default.
- W2896924809 creator A5019856155 @default.
- W2896924809 creator A5020528495 @default.
- W2896924809 creator A5024359063 @default.
- W2896924809 creator A5047579831 @default.
- W2896924809 date "2018-10-22" @default.
- W2896924809 modified "2023-10-18" @default.
- W2896924809 title "A methodological approach for deep learning to distinguish between meningiomas and gliomas on canine MR-images" @default.
- W2896924809 cites W1544825436 @default.
- W2896924809 cites W1787509240 @default.
- W2896924809 cites W1952890439 @default.
- W2896924809 cites W1999517566 @default.
- W2896924809 cites W2036596523 @default.
- W2896924809 cites W2070639102 @default.
- W2896924809 cites W2097117768 @default.
- W2896924809 cites W2120725344 @default.
- W2896924809 cites W2135587040 @default.
- W2896924809 cites W2146545184 @default.
- W2896924809 cites W2156762605 @default.
- W2896924809 cites W2508983284 @default.
- W2896924809 cites W2533800772 @default.
- W2896924809 cites W2578865301 @default.
- W2896924809 cites W2592929672 @default.
- W2896924809 cites W2596010467 @default.
- W2896924809 cites W2620760558 @default.
- W2896924809 cites W2736206297 @default.
- W2896924809 cites W2758426659 @default.
- W2896924809 cites W2768491633 @default.
- W2896924809 cites W2770869174 @default.
- W2896924809 cites W2781901738 @default.
- W2896924809 cites W2919115771 @default.
- W2896924809 doi "https://doi.org/10.1186/s12917-018-1638-2" @default.
- W2896924809 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6196418" @default.
- W2896924809 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30348148" @default.
- W2896924809 hasPublicationYear "2018" @default.
- W2896924809 type Work @default.
- W2896924809 sameAs 2896924809 @default.
- W2896924809 citedByCount "33" @default.
- W2896924809 countsByYear W28969248092019 @default.
- W2896924809 countsByYear W28969248092020 @default.
- W2896924809 countsByYear W28969248092021 @default.
- W2896924809 countsByYear W28969248092022 @default.
- W2896924809 countsByYear W28969248092023 @default.
- W2896924809 crossrefType "journal-article" @default.
- W2896924809 hasAuthorship W2896924809A5019856155 @default.
- W2896924809 hasAuthorship W2896924809A5020528495 @default.
- W2896924809 hasAuthorship W2896924809A5024359063 @default.
- W2896924809 hasAuthorship W2896924809A5047579831 @default.
- W2896924809 hasBestOaLocation W28969248091 @default.
- W2896924809 hasConcept C108583219 @default.
- W2896924809 hasConcept C126838900 @default.
- W2896924809 hasConcept C143409427 @default.
- W2896924809 hasConcept C153180895 @default.
- W2896924809 hasConcept C154945302 @default.
- W2896924809 hasConcept C169903167 @default.
- W2896924809 hasConcept C2776502983 @default.
- W2896924809 hasConcept C2778227246 @default.
- W2896924809 hasConcept C2779160599 @default.
- W2896924809 hasConcept C41008148 @default.
- W2896924809 hasConcept C502942594 @default.
- W2896924809 hasConcept C71924100 @default.
- W2896924809 hasConcept C81363708 @default.
- W2896924809 hasConcept C95623464 @default.
- W2896924809 hasConceptScore W2896924809C108583219 @default.
- W2896924809 hasConceptScore W2896924809C126838900 @default.
- W2896924809 hasConceptScore W2896924809C143409427 @default.
- W2896924809 hasConceptScore W2896924809C153180895 @default.
- W2896924809 hasConceptScore W2896924809C154945302 @default.
- W2896924809 hasConceptScore W2896924809C169903167 @default.
- W2896924809 hasConceptScore W2896924809C2776502983 @default.
- W2896924809 hasConceptScore W2896924809C2778227246 @default.
- W2896924809 hasConceptScore W2896924809C2779160599 @default.
- W2896924809 hasConceptScore W2896924809C41008148 @default.
- W2896924809 hasConceptScore W2896924809C502942594 @default.
- W2896924809 hasConceptScore W2896924809C71924100 @default.
- W2896924809 hasConceptScore W2896924809C81363708 @default.
- W2896924809 hasConceptScore W2896924809C95623464 @default.
- W2896924809 hasFunder F4320321966 @default.
- W2896924809 hasIssue "1" @default.
- W2896924809 hasLocation W28969248091 @default.
- W2896924809 hasLocation W28969248092 @default.
- W2896924809 hasLocation W28969248093 @default.
- W2896924809 hasLocation W28969248094 @default.
- W2896924809 hasLocation W28969248095 @default.
- W2896924809 hasOpenAccess W2896924809 @default.
- W2896924809 hasPrimaryLocation W28969248091 @default.
- W2896924809 hasRelatedWork W1982741417 @default.
- W2896924809 hasRelatedWork W2234322404 @default.
- W2896924809 hasRelatedWork W2406984390 @default.
- W2896924809 hasRelatedWork W2887359201 @default.
- W2896924809 hasRelatedWork W3208778134 @default.
- W2896924809 hasRelatedWork W4220833452 @default.
- W2896924809 hasRelatedWork W4223451915 @default.
- W2896924809 hasRelatedWork W4308767530 @default.
- W2896924809 hasRelatedWork W4386951147 @default.
- W2896924809 hasRelatedWork W3005931108 @default.
- W2896924809 hasVolume "14" @default.
- W2896924809 isParatext "false" @default.
- W2896924809 isRetracted "false" @default.