Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896937211> ?p ?o ?g. }
- W2896937211 endingPage "43" @default.
- W2896937211 startingPage "33" @default.
- W2896937211 abstract "The purpose of this study is to adapt Multilevel Monte Carlo (MLMC) sampling technique for random noise estimation in stochastic multiscale systems and evaluate the performance of this method. The system under consideration was a simulation of thin film formation by chemical vapour deposition, where a kinetic Monte Carlo solid-on-solid model was coupled with partial differential equations that represented mass, energy and momentum transport. The noise in the expected value of the system’s observable (film roughness) was estimated using MLMC and standard Monte Carlo (MC) sampling. The MLMC technique achieved conservative estimates of noise in the observable at an order of magnitude lower computational cost than standard MC sampling. This study highlights the nuances of adapting the MLMC technique to the stochastic multiscale system and provides insight on the benefits and challenges of using MLMC for noise estimation in stochastic multiscale systems." @default.
- W2896937211 created "2018-10-26" @default.
- W2896937211 creator A5043725286 @default.
- W2896937211 creator A5063715865 @default.
- W2896937211 date "2018-12-01" @default.
- W2896937211 modified "2023-10-04" @default.
- W2896937211 title "Multilevel Monte Carlo for noise estimation in stochastic multiscale systems" @default.
- W2896937211 cites W1197831148 @default.
- W2896937211 cites W1523740859 @default.
- W2896937211 cites W1965618643 @default.
- W2896937211 cites W1972291235 @default.
- W2896937211 cites W1975327134 @default.
- W2896937211 cites W1984879509 @default.
- W2896937211 cites W2000136588 @default.
- W2896937211 cites W2000309010 @default.
- W2896937211 cites W2014945091 @default.
- W2896937211 cites W2024180131 @default.
- W2896937211 cites W2024442222 @default.
- W2896937211 cites W2036403017 @default.
- W2896937211 cites W2042021082 @default.
- W2896937211 cites W2050738787 @default.
- W2896937211 cites W2057896693 @default.
- W2896937211 cites W2061502779 @default.
- W2896937211 cites W2079000916 @default.
- W2896937211 cites W2098341023 @default.
- W2896937211 cites W2107084461 @default.
- W2896937211 cites W2113337191 @default.
- W2896937211 cites W2119592775 @default.
- W2896937211 cites W2124153771 @default.
- W2896937211 cites W2127401368 @default.
- W2896937211 cites W2128522255 @default.
- W2896937211 cites W2130342057 @default.
- W2896937211 cites W2163715525 @default.
- W2896937211 cites W2171594132 @default.
- W2896937211 cites W2195327783 @default.
- W2896937211 cites W2278776224 @default.
- W2896937211 cites W2463622642 @default.
- W2896937211 cites W2507306503 @default.
- W2896937211 cites W2553111806 @default.
- W2896937211 cites W2593467507 @default.
- W2896937211 cites W2595216362 @default.
- W2896937211 cites W2612576875 @default.
- W2896937211 cites W2621318220 @default.
- W2896937211 cites W2623263577 @default.
- W2896937211 cites W2752462490 @default.
- W2896937211 cites W2772538237 @default.
- W2896937211 cites W2793228372 @default.
- W2896937211 cites W2890431580 @default.
- W2896937211 cites W2963974395 @default.
- W2896937211 cites W2964182357 @default.
- W2896937211 cites W2964220983 @default.
- W2896937211 cites W2555343587 @default.
- W2896937211 doi "https://doi.org/10.1016/j.cherd.2018.10.006" @default.
- W2896937211 hasPublicationYear "2018" @default.
- W2896937211 type Work @default.
- W2896937211 sameAs 2896937211 @default.
- W2896937211 citedByCount "6" @default.
- W2896937211 countsByYear W28969372112019 @default.
- W2896937211 countsByYear W28969372112020 @default.
- W2896937211 countsByYear W28969372112021 @default.
- W2896937211 crossrefType "journal-article" @default.
- W2896937211 hasAuthorship W2896937211A5043725286 @default.
- W2896937211 hasAuthorship W2896937211A5063715865 @default.
- W2896937211 hasBestOaLocation W28969372112 @default.
- W2896937211 hasConcept C105795698 @default.
- W2896937211 hasConcept C106131492 @default.
- W2896937211 hasConcept C111350023 @default.
- W2896937211 hasConcept C115961682 @default.
- W2896937211 hasConcept C121332964 @default.
- W2896937211 hasConcept C121864883 @default.
- W2896937211 hasConcept C122592724 @default.
- W2896937211 hasConcept C126255220 @default.
- W2896937211 hasConcept C132725507 @default.
- W2896937211 hasConcept C140779682 @default.
- W2896937211 hasConcept C154945302 @default.
- W2896937211 hasConcept C19499675 @default.
- W2896937211 hasConcept C28826006 @default.
- W2896937211 hasConcept C31972630 @default.
- W2896937211 hasConcept C32848918 @default.
- W2896937211 hasConcept C33923547 @default.
- W2896937211 hasConcept C37669827 @default.
- W2896937211 hasConcept C41008148 @default.
- W2896937211 hasConcept C45786274 @default.
- W2896937211 hasConcept C51955184 @default.
- W2896937211 hasConcept C52740198 @default.
- W2896937211 hasConcept C62520636 @default.
- W2896937211 hasConcept C8272713 @default.
- W2896937211 hasConcept C99498987 @default.
- W2896937211 hasConceptScore W2896937211C105795698 @default.
- W2896937211 hasConceptScore W2896937211C106131492 @default.
- W2896937211 hasConceptScore W2896937211C111350023 @default.
- W2896937211 hasConceptScore W2896937211C115961682 @default.
- W2896937211 hasConceptScore W2896937211C121332964 @default.
- W2896937211 hasConceptScore W2896937211C121864883 @default.
- W2896937211 hasConceptScore W2896937211C122592724 @default.
- W2896937211 hasConceptScore W2896937211C126255220 @default.
- W2896937211 hasConceptScore W2896937211C132725507 @default.
- W2896937211 hasConceptScore W2896937211C140779682 @default.