Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896938208> ?p ?o ?g. }
- W2896938208 endingPage "3470" @default.
- W2896938208 startingPage "3470" @default.
- W2896938208 abstract "Microelectromechanical Systems (MEMS) Inertial Measurement Unit (IMU) containing a three-orthogonal gyroscope and three-orthogonal accelerometer has been widely utilized in position and navigation, due to gradually improved accuracy and its small size and low cost. However, the errors of a MEMS IMU based standalone Inertial Navigation System (INS) will diverge over time dramatically, since there are various and nonlinear errors contained in the MEMS IMU measurements. Therefore, MEMS INS is usually integrated with a Global Positioning System (GPS) for providing reliable navigation solutions. The GPS receiver is able to generate stable and precise position and time information in open sky environment. However, under signal challenging conditions, for instance dense forests, city canyons, or mountain valleys, if the GPS signal is weak and even is blocked, the GPS receiver will fail to output reliable positioning information, and the integration system will fade to an INS standalone system. A number of effects have been devoted to improving the accuracy of INS, and de-nosing or modelling the random errors contained in the MEMS IMU have been demonstrated to be an effective way of improving MEMS INS performance. In this paper, an Artificial Intelligence (AI) method was proposed to de-noise the MEMS IMU output signals, specifically, a popular variant of Recurrent Neural Network (RNN) Long Short Term Memory (LSTM) RNN was employed to filter the MEMS gyroscope outputs, in which the signals were treated as time series. A MEMS IMU (MSI3200, manufactured by MT Microsystems Company, Hebei, China) was employed to test the proposed method, a 2 min raw gyroscope data with 400 Hz sampling rate was collected and employed in this testing. The results show that the standard deviation (STD) of the gyroscope data decreased by 60.3%, 37%, and 44.6% respectively compared with raw signals, and on the other way, the three-axis attitude errors decreased by 15.8%, 18.3% and 51.3% individually. Further, compared with an Auto Regressive and Moving Average (ARMA) model with fixed parameters, the STD of the three-axis gyroscope outputs decreased by 42.4%, 21.4% and 21.4%, and the attitude errors decreased by 47.6%, 42.3% and 52.0%. The results indicated that the de-noising scheme was effective for improving MEMS INS accuracy, and the proposed LSTM-RNN method was more preferable in this application." @default.
- W2896938208 created "2018-10-26" @default.
- W2896938208 creator A5001465584 @default.
- W2896938208 creator A5004707970 @default.
- W2896938208 creator A5016516867 @default.
- W2896938208 creator A5034969040 @default.
- W2896938208 creator A5072123826 @default.
- W2896938208 creator A5074175188 @default.
- W2896938208 creator A5089997723 @default.
- W2896938208 date "2018-10-15" @default.
- W2896938208 modified "2023-10-07" @default.
- W2896938208 title "A MEMS IMU De-Noising Method Using Long Short Term Memory Recurrent Neural Networks (LSTM-RNN)" @default.
- W2896938208 cites W2014289136 @default.
- W2896938208 cites W2018565194 @default.
- W2896938208 cites W2034289529 @default.
- W2896938208 cites W2064675550 @default.
- W2896938208 cites W2144529612 @default.
- W2896938208 cites W2162863186 @default.
- W2896938208 cites W2348244659 @default.
- W2896938208 cites W2588292068 @default.
- W2896938208 cites W2763744422 @default.
- W2896938208 cites W2770745688 @default.
- W2896938208 cites W2794371568 @default.
- W2896938208 cites W2890729512 @default.
- W2896938208 cites W2893950494 @default.
- W2896938208 doi "https://doi.org/10.3390/s18103470" @default.
- W2896938208 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6210601" @default.
- W2896938208 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30326646" @default.
- W2896938208 hasPublicationYear "2018" @default.
- W2896938208 type Work @default.
- W2896938208 sameAs 2896938208 @default.
- W2896938208 citedByCount "70" @default.
- W2896938208 countsByYear W28969382082018 @default.
- W2896938208 countsByYear W28969382082019 @default.
- W2896938208 countsByYear W28969382082020 @default.
- W2896938208 countsByYear W28969382082021 @default.
- W2896938208 countsByYear W28969382082022 @default.
- W2896938208 countsByYear W28969382082023 @default.
- W2896938208 crossrefType "journal-article" @default.
- W2896938208 hasAuthorship W2896938208A5001465584 @default.
- W2896938208 hasAuthorship W2896938208A5004707970 @default.
- W2896938208 hasAuthorship W2896938208A5016516867 @default.
- W2896938208 hasAuthorship W2896938208A5034969040 @default.
- W2896938208 hasAuthorship W2896938208A5072123826 @default.
- W2896938208 hasAuthorship W2896938208A5074175188 @default.
- W2896938208 hasAuthorship W2896938208A5089997723 @default.
- W2896938208 hasBestOaLocation W28969382081 @default.
- W2896938208 hasConcept C111919701 @default.
- W2896938208 hasConcept C115961682 @default.
- W2896938208 hasConcept C121332964 @default.
- W2896938208 hasConcept C127413603 @default.
- W2896938208 hasConcept C128651787 @default.
- W2896938208 hasConcept C12957241 @default.
- W2896938208 hasConcept C14279187 @default.
- W2896938208 hasConcept C146978453 @default.
- W2896938208 hasConcept C147168706 @default.
- W2896938208 hasConcept C154945302 @default.
- W2896938208 hasConcept C158488048 @default.
- W2896938208 hasConcept C173386949 @default.
- W2896938208 hasConcept C198613851 @default.
- W2896938208 hasConcept C2777783341 @default.
- W2896938208 hasConcept C31972630 @default.
- W2896938208 hasConcept C41008148 @default.
- W2896938208 hasConcept C50644808 @default.
- W2896938208 hasConcept C60229501 @default.
- W2896938208 hasConcept C62520636 @default.
- W2896938208 hasConcept C72768775 @default.
- W2896938208 hasConcept C76155785 @default.
- W2896938208 hasConcept C79061980 @default.
- W2896938208 hasConcept C79403827 @default.
- W2896938208 hasConcept C89805583 @default.
- W2896938208 hasConcept C99498987 @default.
- W2896938208 hasConceptScore W2896938208C111919701 @default.
- W2896938208 hasConceptScore W2896938208C115961682 @default.
- W2896938208 hasConceptScore W2896938208C121332964 @default.
- W2896938208 hasConceptScore W2896938208C127413603 @default.
- W2896938208 hasConceptScore W2896938208C128651787 @default.
- W2896938208 hasConceptScore W2896938208C12957241 @default.
- W2896938208 hasConceptScore W2896938208C14279187 @default.
- W2896938208 hasConceptScore W2896938208C146978453 @default.
- W2896938208 hasConceptScore W2896938208C147168706 @default.
- W2896938208 hasConceptScore W2896938208C154945302 @default.
- W2896938208 hasConceptScore W2896938208C158488048 @default.
- W2896938208 hasConceptScore W2896938208C173386949 @default.
- W2896938208 hasConceptScore W2896938208C198613851 @default.
- W2896938208 hasConceptScore W2896938208C2777783341 @default.
- W2896938208 hasConceptScore W2896938208C31972630 @default.
- W2896938208 hasConceptScore W2896938208C41008148 @default.
- W2896938208 hasConceptScore W2896938208C50644808 @default.
- W2896938208 hasConceptScore W2896938208C60229501 @default.
- W2896938208 hasConceptScore W2896938208C62520636 @default.
- W2896938208 hasConceptScore W2896938208C72768775 @default.
- W2896938208 hasConceptScore W2896938208C76155785 @default.
- W2896938208 hasConceptScore W2896938208C79061980 @default.
- W2896938208 hasConceptScore W2896938208C79403827 @default.
- W2896938208 hasConceptScore W2896938208C89805583 @default.
- W2896938208 hasConceptScore W2896938208C99498987 @default.
- W2896938208 hasFunder F4320335432 @default.