Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896938587> ?p ?o ?g. }
- W2896938587 abstract "There are two important gaps of knowledge in depression treatment, namely the lack of biomarkers predicting response to antidepressants and the limited knowledge of the molecular mechanisms underlying clinical improvement. However, individually tailored treatment strategies and individualized prescription are greatly needed given the huge socio-economic burden of depression, the latency until clinical improvement can be observed and the response variability to a particular compound. Still, individual patient-level antidepressant treatment outcomes are highly unpredictable. In contrast to other therapeutic areas and despite tremendous efforts during the past years, the genomics era so far has failed to provide biological or genetic predictors of clinical utility for routine use in depression treatment. Specifically, we suggest to 1) shift the focus from the group patterns to individual outcomes, 2) use dimensional classifications such as Research Domain Criteria, 3) envision better planning and improved connections between pre-clinical and clinical studies within translational research units. In contrast to studies in patients, animal models enable both searches for peripheral biosignatures predicting treatment response and in depth-analyses of the neurobiological pathways shaping individual antidepressant response in the brain. While there is a considerable number of animal models available aiming at mimicking disease-like conditions such as those seen in depressive disorder, only a limited number of preclinical or truly translational investigations is dedicated to the issue of heterogeneity seen in response to antidepressant treatment. In this mini-review, we provide an overview on the current state of knowledge and propose a framework for successful translational studies into antidepressant treatment response." @default.
- W2896938587 created "2018-10-26" @default.
- W2896938587 creator A5006911509 @default.
- W2896938587 creator A5009522199 @default.
- W2896938587 creator A5010075178 @default.
- W2896938587 creator A5048197346 @default.
- W2896938587 creator A5071241536 @default.
- W2896938587 date "2018-10-22" @default.
- W2896938587 modified "2023-10-14" @default.
- W2896938587 title "Understanding and Predicting Antidepressant Response: Using Animal Models to Move Toward Precision Psychiatry" @default.
- W2896938587 cites W1781867922 @default.
- W2896938587 cites W1936727506 @default.
- W2896938587 cites W1980996290 @default.
- W2896938587 cites W1981654563 @default.
- W2896938587 cites W1994672146 @default.
- W2896938587 cites W1997159235 @default.
- W2896938587 cites W2001989148 @default.
- W2896938587 cites W2006931708 @default.
- W2896938587 cites W2007816528 @default.
- W2896938587 cites W2023825621 @default.
- W2896938587 cites W2038783721 @default.
- W2896938587 cites W2050034605 @default.
- W2896938587 cites W2053065690 @default.
- W2896938587 cites W2066458367 @default.
- W2896938587 cites W2071070948 @default.
- W2896938587 cites W2072531628 @default.
- W2896938587 cites W2089617519 @default.
- W2896938587 cites W2097983973 @default.
- W2896938587 cites W2106623141 @default.
- W2896938587 cites W2134118606 @default.
- W2896938587 cites W2138920002 @default.
- W2896938587 cites W2144838452 @default.
- W2896938587 cites W2353111961 @default.
- W2896938587 cites W2398143306 @default.
- W2896938587 cites W2430804118 @default.
- W2896938587 cites W2469363586 @default.
- W2896938587 cites W2527824850 @default.
- W2896938587 cites W2603258172 @default.
- W2896938587 cites W2604652480 @default.
- W2896938587 cites W2610937682 @default.
- W2896938587 cites W2617341365 @default.
- W2896938587 cites W2626018769 @default.
- W2896938587 cites W2746917316 @default.
- W2896938587 cites W2777551120 @default.
- W2896938587 cites W2810880335 @default.
- W2896938587 cites W2884139444 @default.
- W2896938587 cites W70778864 @default.
- W2896938587 cites W84932982 @default.
- W2896938587 doi "https://doi.org/10.3389/fpsyt.2018.00512" @default.
- W2896938587 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6204461" @default.
- W2896938587 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30405454" @default.
- W2896938587 hasPublicationYear "2018" @default.
- W2896938587 type Work @default.
- W2896938587 sameAs 2896938587 @default.
- W2896938587 citedByCount "12" @default.
- W2896938587 countsByYear W28969385872019 @default.
- W2896938587 countsByYear W28969385872020 @default.
- W2896938587 countsByYear W28969385872021 @default.
- W2896938587 countsByYear W28969385872022 @default.
- W2896938587 countsByYear W28969385872023 @default.
- W2896938587 crossrefType "journal-article" @default.
- W2896938587 hasAuthorship W2896938587A5006911509 @default.
- W2896938587 hasAuthorship W2896938587A5009522199 @default.
- W2896938587 hasAuthorship W2896938587A5010075178 @default.
- W2896938587 hasAuthorship W2896938587A5048197346 @default.
- W2896938587 hasAuthorship W2896938587A5071241536 @default.
- W2896938587 hasBestOaLocation W28969385871 @default.
- W2896938587 hasConcept C118552586 @default.
- W2896938587 hasConcept C126322002 @default.
- W2896938587 hasConcept C128544194 @default.
- W2896938587 hasConcept C139719470 @default.
- W2896938587 hasConcept C142724271 @default.
- W2896938587 hasConcept C15744967 @default.
- W2896938587 hasConcept C162324750 @default.
- W2896938587 hasConcept C169900460 @default.
- W2896938587 hasConcept C2426938 @default.
- W2896938587 hasConcept C2776867660 @default.
- W2896938587 hasConcept C2777343845 @default.
- W2896938587 hasConcept C2779134260 @default.
- W2896938587 hasConcept C2779177272 @default.
- W2896938587 hasConcept C2780051608 @default.
- W2896938587 hasConcept C535046627 @default.
- W2896938587 hasConcept C558461103 @default.
- W2896938587 hasConcept C60644358 @default.
- W2896938587 hasConcept C71924100 @default.
- W2896938587 hasConcept C86803240 @default.
- W2896938587 hasConcept C98274493 @default.
- W2896938587 hasConceptScore W2896938587C118552586 @default.
- W2896938587 hasConceptScore W2896938587C126322002 @default.
- W2896938587 hasConceptScore W2896938587C128544194 @default.
- W2896938587 hasConceptScore W2896938587C139719470 @default.
- W2896938587 hasConceptScore W2896938587C142724271 @default.
- W2896938587 hasConceptScore W2896938587C15744967 @default.
- W2896938587 hasConceptScore W2896938587C162324750 @default.
- W2896938587 hasConceptScore W2896938587C169900460 @default.
- W2896938587 hasConceptScore W2896938587C2426938 @default.
- W2896938587 hasConceptScore W2896938587C2776867660 @default.
- W2896938587 hasConceptScore W2896938587C2777343845 @default.
- W2896938587 hasConceptScore W2896938587C2779134260 @default.
- W2896938587 hasConceptScore W2896938587C2779177272 @default.