Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896940265> ?p ?o ?g. }
- W2896940265 endingPage "53" @default.
- W2896940265 startingPage "19" @default.
- W2896940265 abstract "The chapter aims to cover and analyse contributions from machine learning to detect an insider threat. It presents various launch mechanisms and details impact of an insider attack on various sectors. Presenting state-of-the-art for detecting insider threat based on psychology, criminology and game theory, the chapter also covers case studies showing use of Machine Learning for anomaly detection. In real life, malicious events are low in number. The chapter will showcase detection of such a low occurring anomaly from a large dataset accurately. The chapter specifically focuses on USB device insertion or removal event and apply linear regression followed by Cook’s and Mahalanobis distance to identify malicious activities of the user. Subsequently, it applies Neural Network and Support Vector Machine to login activities of a user to successfully demonstrates detection of an anomaly behaviour. It concludes discussing future directions that uses combination of methods from natural language processing, behavioural analysis, sentiment analysis, and machine learning for insider threat detection." @default.
- W2896940265 created "2018-10-26" @default.
- W2896940265 creator A5054359032 @default.
- W2896940265 creator A5071626652 @default.
- W2896940265 creator A5086623989 @default.
- W2896940265 date "2018-01-01" @default.
- W2896940265 modified "2023-09-26" @default.
- W2896940265 title "Insider Threat Detection: Machine Learning Way" @default.
- W2896940265 cites W1458873377 @default.
- W2896940265 cites W1517229207 @default.
- W2896940265 cites W1517532457 @default.
- W2896940265 cites W1654306951 @default.
- W2896940265 cites W1885783790 @default.
- W2896940265 cites W189404275 @default.
- W2896940265 cites W1964439345 @default.
- W2896940265 cites W1967847731 @default.
- W2896940265 cites W1974561187 @default.
- W2896940265 cites W1980166725 @default.
- W2896940265 cites W2025519999 @default.
- W2896940265 cites W2034596853 @default.
- W2896940265 cites W2045346246 @default.
- W2896940265 cites W2050950317 @default.
- W2896940265 cites W2061210554 @default.
- W2896940265 cites W2085901425 @default.
- W2896940265 cites W2099420981 @default.
- W2896940265 cites W2102648188 @default.
- W2896940265 cites W2108759094 @default.
- W2896940265 cites W2111516449 @default.
- W2896940265 cites W2117184821 @default.
- W2896940265 cites W2130636839 @default.
- W2896940265 cites W2131970275 @default.
- W2896940265 cites W2131998781 @default.
- W2896940265 cites W2132055314 @default.
- W2896940265 cites W2137061487 @default.
- W2896940265 cites W2138209477 @default.
- W2896940265 cites W2142483115 @default.
- W2896940265 cites W2143906483 @default.
- W2896940265 cites W2144584907 @default.
- W2896940265 cites W2153038337 @default.
- W2896940265 cites W2164945937 @default.
- W2896940265 cites W2167200264 @default.
- W2896940265 cites W2338318698 @default.
- W2896940265 cites W2466206609 @default.
- W2896940265 cites W2503869749 @default.
- W2896940265 cites W2525989728 @default.
- W2896940265 cites W2562319768 @default.
- W2896940265 cites W2582257950 @default.
- W2896940265 cites W2599743206 @default.
- W2896940265 cites W2600341711 @default.
- W2896940265 cites W378366556 @default.
- W2896940265 cites W4231625493 @default.
- W2896940265 cites W4236158019 @default.
- W2896940265 cites W4250509384 @default.
- W2896940265 cites W604313240 @default.
- W2896940265 doi "https://doi.org/10.1007/978-3-319-97643-3_2" @default.
- W2896940265 hasPublicationYear "2018" @default.
- W2896940265 type Work @default.
- W2896940265 sameAs 2896940265 @default.
- W2896940265 citedByCount "5" @default.
- W2896940265 countsByYear W28969402652019 @default.
- W2896940265 countsByYear W28969402652022 @default.
- W2896940265 countsByYear W28969402652023 @default.
- W2896940265 crossrefType "book-chapter" @default.
- W2896940265 hasAuthorship W2896940265A5054359032 @default.
- W2896940265 hasAuthorship W2896940265A5071626652 @default.
- W2896940265 hasAuthorship W2896940265A5086623989 @default.
- W2896940265 hasConcept C113324615 @default.
- W2896940265 hasConcept C119857082 @default.
- W2896940265 hasConcept C12267149 @default.
- W2896940265 hasConcept C154945302 @default.
- W2896940265 hasConcept C17744445 @default.
- W2896940265 hasConcept C1921717 @default.
- W2896940265 hasConcept C199539241 @default.
- W2896940265 hasConcept C2776633304 @default.
- W2896940265 hasConcept C2778971194 @default.
- W2896940265 hasConcept C38652104 @default.
- W2896940265 hasConcept C41008148 @default.
- W2896940265 hasConcept C739882 @default.
- W2896940265 hasConceptScore W2896940265C113324615 @default.
- W2896940265 hasConceptScore W2896940265C119857082 @default.
- W2896940265 hasConceptScore W2896940265C12267149 @default.
- W2896940265 hasConceptScore W2896940265C154945302 @default.
- W2896940265 hasConceptScore W2896940265C17744445 @default.
- W2896940265 hasConceptScore W2896940265C1921717 @default.
- W2896940265 hasConceptScore W2896940265C199539241 @default.
- W2896940265 hasConceptScore W2896940265C2776633304 @default.
- W2896940265 hasConceptScore W2896940265C2778971194 @default.
- W2896940265 hasConceptScore W2896940265C38652104 @default.
- W2896940265 hasConceptScore W2896940265C41008148 @default.
- W2896940265 hasConceptScore W2896940265C739882 @default.
- W2896940265 hasLocation W28969402651 @default.
- W2896940265 hasOpenAccess W2896940265 @default.
- W2896940265 hasPrimaryLocation W28969402651 @default.
- W2896940265 hasRelatedWork W2075378482 @default.
- W2896940265 hasRelatedWork W2113484497 @default.
- W2896940265 hasRelatedWork W2147780605 @default.
- W2896940265 hasRelatedWork W2149086123 @default.
- W2896940265 hasRelatedWork W2601250586 @default.