Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896941459> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2896941459 abstract "It is crucial that the situation of railway scene needs to be periodically monitored to ensure railway safety. Usually, the camera is placed in the driver's cab on a moving vehicle to generate a large number of high-resolution images of railway scene. The traditional image processing inspection methods can only inspect railway scene of the local and simple background. They are feasible sometimes, but not universal and efficient. In this paper, a novel and practical approach is proposed to visual railway scene detection with Deep Semantic Segmentation Convolutional Neural Networks(DSSCNN). It is helpful for precisely locating and detailedly describe important parts of the railway scene in the entire image instead of separately detecting like traditional methods. In addition, three particular blocks named Conv Block, Dilated Conv Block, and Sum Block in DSSCNN are designed to extract more context information from railway images and enhance the segmentation performance. It shows that DSSCNN trained end-to-end and encoder-decoder network structure for semantic segmentation of railway scene are more superior than UNet and Fully Convolutional Networks(FCN) on the same datasets. At the same time, it is also verified that it is feasible and efficient to describe, visual and locate the key parts of the railway scene by DSSCNN." @default.
- W2896941459 created "2018-10-26" @default.
- W2896941459 creator A5018333092 @default.
- W2896941459 creator A5034061393 @default.
- W2896941459 creator A5068452582 @default.
- W2896941459 creator A5068946518 @default.
- W2896941459 creator A5084626383 @default.
- W2896941459 date "2018-07-01" @default.
- W2896941459 modified "2023-09-24" @default.
- W2896941459 title "Deep Semantic Segmentation Neural Networks of Railway Scene" @default.
- W2896941459 cites W1745334888 @default.
- W2896941459 cites W1901129140 @default.
- W2896941459 cites W1923115158 @default.
- W2896941459 cites W1948751323 @default.
- W2896941459 cites W2004491626 @default.
- W2896941459 cites W2031489346 @default.
- W2896941459 cites W2124592697 @default.
- W2896941459 cites W2145023731 @default.
- W2896941459 cites W2163605009 @default.
- W2896941459 cites W2194775991 @default.
- W2896941459 cites W2587828787 @default.
- W2896941459 cites W27675589 @default.
- W2896941459 cites W2963108253 @default.
- W2896941459 cites W2963563573 @default.
- W2896941459 cites W2963881378 @default.
- W2896941459 doi "https://doi.org/10.23919/chicc.2018.8483877" @default.
- W2896941459 hasPublicationYear "2018" @default.
- W2896941459 type Work @default.
- W2896941459 sameAs 2896941459 @default.
- W2896941459 citedByCount "3" @default.
- W2896941459 countsByYear W28969414592019 @default.
- W2896941459 countsByYear W28969414592020 @default.
- W2896941459 countsByYear W28969414592022 @default.
- W2896941459 crossrefType "proceedings-article" @default.
- W2896941459 hasAuthorship W2896941459A5018333092 @default.
- W2896941459 hasAuthorship W2896941459A5034061393 @default.
- W2896941459 hasAuthorship W2896941459A5068452582 @default.
- W2896941459 hasAuthorship W2896941459A5068946518 @default.
- W2896941459 hasAuthorship W2896941459A5084626383 @default.
- W2896941459 hasConcept C111919701 @default.
- W2896941459 hasConcept C118505674 @default.
- W2896941459 hasConcept C124504099 @default.
- W2896941459 hasConcept C151730666 @default.
- W2896941459 hasConcept C153180895 @default.
- W2896941459 hasConcept C154945302 @default.
- W2896941459 hasConcept C2524010 @default.
- W2896941459 hasConcept C2777210771 @default.
- W2896941459 hasConcept C2779343474 @default.
- W2896941459 hasConcept C31972630 @default.
- W2896941459 hasConcept C33923547 @default.
- W2896941459 hasConcept C41008148 @default.
- W2896941459 hasConcept C81363708 @default.
- W2896941459 hasConcept C86803240 @default.
- W2896941459 hasConcept C89600930 @default.
- W2896941459 hasConceptScore W2896941459C111919701 @default.
- W2896941459 hasConceptScore W2896941459C118505674 @default.
- W2896941459 hasConceptScore W2896941459C124504099 @default.
- W2896941459 hasConceptScore W2896941459C151730666 @default.
- W2896941459 hasConceptScore W2896941459C153180895 @default.
- W2896941459 hasConceptScore W2896941459C154945302 @default.
- W2896941459 hasConceptScore W2896941459C2524010 @default.
- W2896941459 hasConceptScore W2896941459C2777210771 @default.
- W2896941459 hasConceptScore W2896941459C2779343474 @default.
- W2896941459 hasConceptScore W2896941459C31972630 @default.
- W2896941459 hasConceptScore W2896941459C33923547 @default.
- W2896941459 hasConceptScore W2896941459C41008148 @default.
- W2896941459 hasConceptScore W2896941459C81363708 @default.
- W2896941459 hasConceptScore W2896941459C86803240 @default.
- W2896941459 hasConceptScore W2896941459C89600930 @default.
- W2896941459 hasLocation W28969414591 @default.
- W2896941459 hasOpenAccess W2896941459 @default.
- W2896941459 hasPrimaryLocation W28969414591 @default.
- W2896941459 hasRelatedWork W2342591535 @default.
- W2896941459 hasRelatedWork W2415731916 @default.
- W2896941459 hasRelatedWork W2765643166 @default.
- W2896941459 hasRelatedWork W2799597343 @default.
- W2896941459 hasRelatedWork W2980471673 @default.
- W2896941459 hasRelatedWork W2994347668 @default.
- W2896941459 hasRelatedWork W2995422253 @default.
- W2896941459 hasRelatedWork W3095523211 @default.
- W2896941459 hasRelatedWork W3198323177 @default.
- W2896941459 hasRelatedWork W3217303622 @default.
- W2896941459 isParatext "false" @default.
- W2896941459 isRetracted "false" @default.
- W2896941459 magId "2896941459" @default.
- W2896941459 workType "article" @default.