Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896957283> ?p ?o ?g. }
- W2896957283 endingPage "20" @default.
- W2896957283 startingPage "7" @default.
- W2896957283 abstract "Monotopic proteins are underrepresented in the PDB, with only 25 nonredundant structures currently constituting ∼0.06% of known structures. Many monotopic membrane proteins are homologous to soluble counterparts and use common structural features to embed shallowly in the membrane. Selected monotopic proteins engage more deeply in the membrane (e.g., associating via reentrant-helical domains). Monotopic enzymes are purposed for catalysis of reactions involving hydrophobic or amphiphilic substrates not readily soluble in water. The active sites of monotopic enzymes may be at the membrane surface or distal to it, and the requirement for hydrophobic substrate extraction is dictated by the substrate and the relative orientations of the active site and the membrane. Association of multiple monotopic enzymes in pathways can be advantageously applied in the assembly of complex glycoconjugates. Monotopic membrane proteins, classified by topology, are proteins that embed into a single face of the membrane. These proteins are generally underrepresented in the Protein Data Bank (PDB), but the past decade of research has revealed new examples that allow the description of generalizable features. This Opinion article summarizes shared characteristics including oligomerization states, modes of membrane association, mechanisms of interaction with hydrophobic or amphiphilic substrates, and homology to soluble folds. We also discuss how associations of monotopic enzymes in pathways can be used to promote substrate specificity and product composition. These examples highlight the challenges in structure determination specific to this class of proteins, but also the promise of new understanding from future study of these proteins that reside at the interface. Monotopic membrane proteins, classified by topology, are proteins that embed into a single face of the membrane. These proteins are generally underrepresented in the Protein Data Bank (PDB), but the past decade of research has revealed new examples that allow the description of generalizable features. This Opinion article summarizes shared characteristics including oligomerization states, modes of membrane association, mechanisms of interaction with hydrophobic or amphiphilic substrates, and homology to soluble folds. We also discuss how associations of monotopic enzymes in pathways can be used to promote substrate specificity and product composition. These examples highlight the challenges in structure determination specific to this class of proteins, but also the promise of new understanding from future study of these proteins that reside at the interface. a molecule, protein segment, or protein having both hydophobic and hydrophilic components. a membrane protein that spans the membrane bilayer a single time; sometimes referred to as a ‘single-pass’ transmembrane protein. an enzyme that catalyzes the transfer of a sugar from an activated sugar donor, commonly a nucleoside diphosphate derivative, to an acceptor such as another sugar or a lipid. members of the same protein family. a protein that is inserted into the membrane and can be solubilized only by detergent. two structurally and funtionally similar proteins with nonidentical sequences due to encoding by different genes or splicing variations. a membrane protein that does not span the membrane bilayer, but rather enters and exits on a single face of the membrane bilayer. a curated web resource providing information on the position of proteins in membranes. Included in the database is output from the PPM server. members of the same protein family having the same function but occuring in different organisms. members of the same protein family having different functions. a protein associated with the membrane surface in a manner that can be dissociated by the addition of high salt. an enzyme that catalyzes the transfer of a phosphosugar from an activated sugar donor, commonly a nucleoside diphosphate derivative, to an acceptor substrate such as a polyprenol phosphate. a linear long-chain alcohol featuring greater than six isoprene units (branched five-carbon units) of either cis or trans configuration. a membrane protein that spans the membrane bilayer multiple times. calculates rotational and translational positions of transmembrane and peripheral proteins in the membrane using the PDB coordinate files as input. a discontinuous hydrophobic helix that enters and exits on a single face of the membrane bilayer. a fold characterized by repeating motifs of α-helix–β-strand–α-helix secondary structure elements where the β-strands together form a parallel β-sheet. an algorithm to predict transmembrane helices in proteins using a hidden Markov model." @default.
- W2896957283 created "2018-10-26" @default.
- W2896957283 creator A5005385287 @default.
- W2896957283 creator A5057579902 @default.
- W2896957283 creator A5062358325 @default.
- W2896957283 creator A5068838774 @default.
- W2896957283 date "2019-01-01" @default.
- W2896957283 modified "2023-10-16" @default.
- W2896957283 title "Monotopic Membrane Proteins Join the Fold" @default.
- W2896957283 cites W1753281475 @default.
- W2896957283 cites W1876994579 @default.
- W2896957283 cites W1917081598 @default.
- W2896957283 cites W1963968986 @default.
- W2896957283 cites W1968212477 @default.
- W2896957283 cites W1969331541 @default.
- W2896957283 cites W1970822585 @default.
- W2896957283 cites W1976573258 @default.
- W2896957283 cites W1984646810 @default.
- W2896957283 cites W198863919 @default.
- W2896957283 cites W1989426189 @default.
- W2896957283 cites W1989499492 @default.
- W2896957283 cites W1991034999 @default.
- W2896957283 cites W1992223827 @default.
- W2896957283 cites W1992450656 @default.
- W2896957283 cites W2006189184 @default.
- W2896957283 cites W2011187123 @default.
- W2896957283 cites W2015134782 @default.
- W2896957283 cites W2022317687 @default.
- W2896957283 cites W2023960897 @default.
- W2896957283 cites W2027991357 @default.
- W2896957283 cites W2034463011 @default.
- W2896957283 cites W2036032390 @default.
- W2896957283 cites W2036082258 @default.
- W2896957283 cites W2036614843 @default.
- W2896957283 cites W2039562073 @default.
- W2896957283 cites W2041309279 @default.
- W2896957283 cites W2046267877 @default.
- W2896957283 cites W2046389334 @default.
- W2896957283 cites W2047567262 @default.
- W2896957283 cites W2055111899 @default.
- W2896957283 cites W2055131068 @default.
- W2896957283 cites W2059134180 @default.
- W2896957283 cites W2066885275 @default.
- W2896957283 cites W2067217503 @default.
- W2896957283 cites W2067680858 @default.
- W2896957283 cites W2072470496 @default.
- W2896957283 cites W2073032357 @default.
- W2896957283 cites W2076866108 @default.
- W2896957283 cites W2079415210 @default.
- W2896957283 cites W2083895917 @default.
- W2896957283 cites W2090239623 @default.
- W2896957283 cites W2092415816 @default.
- W2896957283 cites W2092674564 @default.
- W2896957283 cites W2094158850 @default.
- W2896957283 cites W2095166308 @default.
- W2896957283 cites W2095444471 @default.
- W2896957283 cites W2106457742 @default.
- W2896957283 cites W2112335860 @default.
- W2896957283 cites W2112921913 @default.
- W2896957283 cites W2115350007 @default.
- W2896957283 cites W2121931858 @default.
- W2896957283 cites W2127900433 @default.
- W2896957283 cites W2129029669 @default.
- W2896957283 cites W2130719983 @default.
- W2896957283 cites W2134266820 @default.
- W2896957283 cites W2139958335 @default.
- W2896957283 cites W2140831051 @default.
- W2896957283 cites W2142627320 @default.
- W2896957283 cites W2147220791 @default.
- W2896957283 cites W2147796031 @default.
- W2896957283 cites W2152770371 @default.
- W2896957283 cites W2154886602 @default.
- W2896957283 cites W2158837823 @default.
- W2896957283 cites W2161309724 @default.
- W2896957283 cites W2163277997 @default.
- W2896957283 cites W2172281886 @default.
- W2896957283 cites W2173600316 @default.
- W2896957283 cites W2526956263 @default.
- W2896957283 cites W2668542834 @default.
- W2896957283 cites W2735876928 @default.
- W2896957283 cites W2735911553 @default.
- W2896957283 cites W2787547209 @default.
- W2896957283 cites W2803725206 @default.
- W2896957283 cites W2888962461 @default.
- W2896957283 cites W2949167950 @default.
- W2896957283 cites W4234317413 @default.
- W2896957283 doi "https://doi.org/10.1016/j.tibs.2018.09.013" @default.
- W2896957283 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6309722" @default.
- W2896957283 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30337134" @default.
- W2896957283 hasPublicationYear "2019" @default.
- W2896957283 type Work @default.
- W2896957283 sameAs 2896957283 @default.
- W2896957283 citedByCount "43" @default.
- W2896957283 countsByYear W28969572832019 @default.
- W2896957283 countsByYear W28969572832020 @default.
- W2896957283 countsByYear W28969572832021 @default.
- W2896957283 countsByYear W28969572832022 @default.
- W2896957283 countsByYear W28969572832023 @default.