Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896961091> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2896961091 abstract "Abstract Measuring the rheological properties during the drilling operation is time-consuming and usually, these properties are measured twice a day. The rheological properties play a key factor in controlling the drilling operation. The knowledge of these properties are very important for hydraulic calculations which are required for hole cleaning optimization, surge and swab pressure calculations and others. Wrong estimation of these properties may lead to big disaster during the drilling operation such as pipe sticking, loss of circulation, and/or well control issues. The aforementioned problems will increase the non-productive time and hence the overall cost of the drilling operations. Artificial intelligence techniques, once they are optimized, can be used to predict the rheological properties in a real time. The main idea of this paper is to use the frequent measurements of the mud density, Marsh funnel viscosity and solid percent, which are measured every 15-20 minutes and build new artificial intelligent models for plastic viscosity, yield point, apparent viscosity, and flow behavior index. Different AI techniques were evaluated such as; artificial neural network, support vector machine (SVM) and adaptive-network-based fuzzy inference system (ANFIS). The model which yielded the highest accuracy (lower average absolute error (AAPE) and highest correlation coefficient (R)) was used to develop new empirical correlations for each rheological properties. For the first time, the artificial intelligence techniques were combined with the self-adaptive differential evolution algorithm to optimize the best combination of the AI parameters. The results obtained showed that ANN is the best AI technique to predict the rheological properties from the mud density, Marsh funnel viscosity, and solid percent. It is very important to combine the self-adaptive differential evolution with the artificial neural network to predict the rheological properties with high accuracy (AAPE less than 5% and R greater than 95%). The ANN black box was converted to a white box by extracting the weights and biases of the optimized SaDe-ANN model for each rheological parameter and a new empirical correlation was developed. The developed technique will help the drilling engineer to predict the rheological properties every 15 to 20 minutes and this will help in hole cleaning optimization and avoid most of the drilling problems such as pipe sticking and loss of circulation. The developed correlation can be used without the need for the ANN model and can apply using any software. No additional equipment or especial software is required for applying the new method." @default.
- W2896961091 created "2018-10-26" @default.
- W2896961091 creator A5005252413 @default.
- W2896961091 creator A5046127560 @default.
- W2896961091 creator A5046818830 @default.
- W2896961091 creator A5049649985 @default.
- W2896961091 creator A5055345601 @default.
- W2896961091 date "2018-04-23" @default.
- W2896961091 modified "2023-10-05" @default.
- W2896961091 title "Real Time Determination of Rheological Properties of Spud Drilling Fluids Using a Hybrid Artificial Intelligence Technique" @default.
- W2896961091 cites W1834844660 @default.
- W2896961091 cites W1971046155 @default.
- W2896961091 cites W1973491918 @default.
- W2896961091 cites W1984760612 @default.
- W2896961091 cites W1996467797 @default.
- W2896961091 cites W2012883561 @default.
- W2896961091 cites W2029492351 @default.
- W2896961091 cites W2040411177 @default.
- W2896961091 cites W2077009979 @default.
- W2896961091 cites W2084403904 @default.
- W2896961091 cites W2133360658 @default.
- W2896961091 cites W2152820512 @default.
- W2896961091 cites W2251270867 @default.
- W2896961091 cites W2338823636 @default.
- W2896961091 cites W2580773761 @default.
- W2896961091 cites W2620807656 @default.
- W2896961091 cites W3082053267 @default.
- W2896961091 doi "https://doi.org/10.2118/192257-ms" @default.
- W2896961091 hasPublicationYear "2018" @default.
- W2896961091 type Work @default.
- W2896961091 sameAs 2896961091 @default.
- W2896961091 citedByCount "12" @default.
- W2896961091 countsByYear W28969610912019 @default.
- W2896961091 countsByYear W28969610912020 @default.
- W2896961091 countsByYear W28969610912021 @default.
- W2896961091 countsByYear W28969610912022 @default.
- W2896961091 countsByYear W28969610912023 @default.
- W2896961091 crossrefType "proceedings-article" @default.
- W2896961091 hasAuthorship W2896961091A5005252413 @default.
- W2896961091 hasAuthorship W2896961091A5046127560 @default.
- W2896961091 hasAuthorship W2896961091A5046818830 @default.
- W2896961091 hasAuthorship W2896961091A5049649985 @default.
- W2896961091 hasAuthorship W2896961091A5055345601 @default.
- W2896961091 hasConcept C119857082 @default.
- W2896961091 hasConcept C127172972 @default.
- W2896961091 hasConcept C127413603 @default.
- W2896961091 hasConcept C152068911 @default.
- W2896961091 hasConcept C154945302 @default.
- W2896961091 hasConcept C159985019 @default.
- W2896961091 hasConcept C186108316 @default.
- W2896961091 hasConcept C192562407 @default.
- W2896961091 hasConcept C195975749 @default.
- W2896961091 hasConcept C200990466 @default.
- W2896961091 hasConcept C25197100 @default.
- W2896961091 hasConcept C41008148 @default.
- W2896961091 hasConcept C50644808 @default.
- W2896961091 hasConcept C58166 @default.
- W2896961091 hasConcept C78519656 @default.
- W2896961091 hasConceptScore W2896961091C119857082 @default.
- W2896961091 hasConceptScore W2896961091C127172972 @default.
- W2896961091 hasConceptScore W2896961091C127413603 @default.
- W2896961091 hasConceptScore W2896961091C152068911 @default.
- W2896961091 hasConceptScore W2896961091C154945302 @default.
- W2896961091 hasConceptScore W2896961091C159985019 @default.
- W2896961091 hasConceptScore W2896961091C186108316 @default.
- W2896961091 hasConceptScore W2896961091C192562407 @default.
- W2896961091 hasConceptScore W2896961091C195975749 @default.
- W2896961091 hasConceptScore W2896961091C200990466 @default.
- W2896961091 hasConceptScore W2896961091C25197100 @default.
- W2896961091 hasConceptScore W2896961091C41008148 @default.
- W2896961091 hasConceptScore W2896961091C50644808 @default.
- W2896961091 hasConceptScore W2896961091C58166 @default.
- W2896961091 hasConceptScore W2896961091C78519656 @default.
- W2896961091 hasLocation W28969610911 @default.
- W2896961091 hasOpenAccess W2896961091 @default.
- W2896961091 hasPrimaryLocation W28969610911 @default.
- W2896961091 hasRelatedWork W1821681404 @default.
- W2896961091 hasRelatedWork W1968745532 @default.
- W2896961091 hasRelatedWork W2048365006 @default.
- W2896961091 hasRelatedWork W2103397951 @default.
- W2896961091 hasRelatedWork W2363441733 @default.
- W2896961091 hasRelatedWork W2367787079 @default.
- W2896961091 hasRelatedWork W2380022378 @default.
- W2896961091 hasRelatedWork W2895895739 @default.
- W2896961091 hasRelatedWork W2914669717 @default.
- W2896961091 hasRelatedWork W3148133694 @default.
- W2896961091 isParatext "false" @default.
- W2896961091 isRetracted "false" @default.
- W2896961091 magId "2896961091" @default.
- W2896961091 workType "article" @default.