Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896962189> ?p ?o ?g. }
- W2896962189 endingPage "401" @default.
- W2896962189 startingPage "391" @default.
- W2896962189 abstract "Regulations are increasing the scope of activities that fall under the remit of drug safety. Currently, individual case safety report (ICSR) collection and collation is done manually, requiring pharmacovigilance professionals to perform many transactional activities before data are available for assessment and aggregated analyses. For a biopharmaceutical company to meet its responsibilities to patients and regulatory bodies regarding the safe use and distribution of its products, improved business processes must be implemented to drive the industry forward in the best interest of patients globally. Augmented intelligent capabilities have already demonstrated success in capturing adverse events from diverse data sources. It has potential to provide a scalable solution for handling the ever-increasing ICSR volumes experienced within the industry by supporting pharmacovigilance professionals’ decision-making. The aim of this study was to train and evaluate a consortium of cognitive services to identify key characteristics of spontaneous ICSRs satisfying an acceptable level of accuracy determined by considering business requirements and effective use in a real-world setting. The results of this study will serve as supporting evidence for or against implementing augmented intelligence in case processing to increase operational efficiency and data quality consistency. A consortium of ten cognitive services to augment aspects of ICSR processing were identified and trained through deep-learning approaches. The input data for model training were 20,000 ICSRs received by Celgene drug safety over a 2-year period. The data were manually made machine-readable through the process of transcription, which converts images into text. The machine-readable documents were manually annotated for pharmacovigilance data elements to facilitate the training and testing of the cognitive services. Once trained by cognitive developers, the cognitive services’ output was reviewed by pharmacovigilance subject-matter experts against the accepted ground-truth for correctness and completeness. To be considered adequately trained and functional, each cognitive service was required to reach a threshold of F1 or accuracy score ≥ 75%. All ten cognitive services under development have reached an evaluative score ≥ 75% for spontaneous ICSRs. All cognitive services under development have achieved the minimum evaluative threshold to be considered adequately trained, demonstrating how machine-learning and natural language processing techniques together provide accurate outputs that may augment pharmacovigilance professionals’ processing of spontaneous ICSRs quickly and accurately. The intention of augmented intelligence is not to replace the pharmacovigilance professional, but rather support them in their consistent decision-making so that they may better handle the overwhelming amount of data otherwise manually curated and monitored for ongoing drug surveillance requirements. Through this supported decision-making, pharmacovigilance professionals may have more time to apply their knowledge in assessing the case rather than spending it performing transactional tasks to simply capture the pertinent data within a safety database. By capturing data consistently and efficiently, we begin to build a corpus of data upon which analyses may be conducted and insights gleaned. Cognitive services may be key to an organization’s transformation to more proactive decision-making needed to meet regulatory requirements and enhance patient safety." @default.
- W2896962189 created "2018-10-26" @default.
- W2896962189 creator A5000391023 @default.
- W2896962189 creator A5009500787 @default.
- W2896962189 creator A5010520358 @default.
- W2896962189 creator A5012615206 @default.
- W2896962189 creator A5021456517 @default.
- W2896962189 creator A5022084215 @default.
- W2896962189 creator A5040682494 @default.
- W2896962189 creator A5050798151 @default.
- W2896962189 creator A5052728525 @default.
- W2896962189 creator A5064536458 @default.
- W2896962189 creator A5067641962 @default.
- W2896962189 creator A5077672649 @default.
- W2896962189 creator A5081435167 @default.
- W2896962189 date "2018-10-13" @default.
- W2896962189 modified "2023-10-01" @default.
- W2896962189 title "Training Augmented Intelligent Capabilities for Pharmacovigilance: Applying Deep-learning Approaches to Individual Case Safety Report Processing" @default.
- W2896962189 cites W2101013878 @default.
- W2896962189 cites W2113753800 @default.
- W2896962189 cites W2147890019 @default.
- W2896962189 cites W2166213950 @default.
- W2896962189 cites W2170788078 @default.
- W2896962189 cites W2336538145 @default.
- W2896962189 cites W2382298227 @default.
- W2896962189 cites W2529655138 @default.
- W2896962189 cites W2552603742 @default.
- W2896962189 cites W2558545807 @default.
- W2896962189 cites W2651948199 @default.
- W2896962189 cites W2758259715 @default.
- W2896962189 cites W2763304064 @default.
- W2896962189 cites W2790157187 @default.
- W2896962189 cites W2962902328 @default.
- W2896962189 doi "https://doi.org/10.1007/s40290-018-0251-9" @default.
- W2896962189 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6267537" @default.
- W2896962189 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30546259" @default.
- W2896962189 hasPublicationYear "2018" @default.
- W2896962189 type Work @default.
- W2896962189 sameAs 2896962189 @default.
- W2896962189 citedByCount "15" @default.
- W2896962189 countsByYear W28969621892019 @default.
- W2896962189 countsByYear W28969621892020 @default.
- W2896962189 countsByYear W28969621892021 @default.
- W2896962189 countsByYear W28969621892022 @default.
- W2896962189 countsByYear W28969621892023 @default.
- W2896962189 crossrefType "journal-article" @default.
- W2896962189 hasAuthorship W2896962189A5000391023 @default.
- W2896962189 hasAuthorship W2896962189A5009500787 @default.
- W2896962189 hasAuthorship W2896962189A5010520358 @default.
- W2896962189 hasAuthorship W2896962189A5012615206 @default.
- W2896962189 hasAuthorship W2896962189A5021456517 @default.
- W2896962189 hasAuthorship W2896962189A5022084215 @default.
- W2896962189 hasAuthorship W2896962189A5040682494 @default.
- W2896962189 hasAuthorship W2896962189A5050798151 @default.
- W2896962189 hasAuthorship W2896962189A5052728525 @default.
- W2896962189 hasAuthorship W2896962189A5064536458 @default.
- W2896962189 hasAuthorship W2896962189A5067641962 @default.
- W2896962189 hasAuthorship W2896962189A5077672649 @default.
- W2896962189 hasAuthorship W2896962189A5081435167 @default.
- W2896962189 hasBestOaLocation W28969621891 @default.
- W2896962189 hasConcept C111919701 @default.
- W2896962189 hasConcept C112930515 @default.
- W2896962189 hasConcept C118552586 @default.
- W2896962189 hasConcept C127413603 @default.
- W2896962189 hasConcept C154945302 @default.
- W2896962189 hasConcept C187191949 @default.
- W2896962189 hasConcept C195094911 @default.
- W2896962189 hasConcept C199360897 @default.
- W2896962189 hasConcept C2522767166 @default.
- W2896962189 hasConcept C2776436953 @default.
- W2896962189 hasConcept C2778012447 @default.
- W2896962189 hasConcept C2780035454 @default.
- W2896962189 hasConcept C41008148 @default.
- W2896962189 hasConcept C48044578 @default.
- W2896962189 hasConcept C57658597 @default.
- W2896962189 hasConcept C71924100 @default.
- W2896962189 hasConcept C77088390 @default.
- W2896962189 hasConceptScore W2896962189C111919701 @default.
- W2896962189 hasConceptScore W2896962189C112930515 @default.
- W2896962189 hasConceptScore W2896962189C118552586 @default.
- W2896962189 hasConceptScore W2896962189C127413603 @default.
- W2896962189 hasConceptScore W2896962189C154945302 @default.
- W2896962189 hasConceptScore W2896962189C187191949 @default.
- W2896962189 hasConceptScore W2896962189C195094911 @default.
- W2896962189 hasConceptScore W2896962189C199360897 @default.
- W2896962189 hasConceptScore W2896962189C2522767166 @default.
- W2896962189 hasConceptScore W2896962189C2776436953 @default.
- W2896962189 hasConceptScore W2896962189C2778012447 @default.
- W2896962189 hasConceptScore W2896962189C2780035454 @default.
- W2896962189 hasConceptScore W2896962189C41008148 @default.
- W2896962189 hasConceptScore W2896962189C48044578 @default.
- W2896962189 hasConceptScore W2896962189C57658597 @default.
- W2896962189 hasConceptScore W2896962189C71924100 @default.
- W2896962189 hasConceptScore W2896962189C77088390 @default.
- W2896962189 hasIssue "6" @default.
- W2896962189 hasLocation W28969621891 @default.
- W2896962189 hasLocation W28969621892 @default.
- W2896962189 hasLocation W28969621893 @default.