Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896965424> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2896965424 abstract "Abstract Formation tops is one of the important information that is gathered during the exploration and delineation phase. This valuable information aids in setting the casing properly during the development phase and ensure proper zonal isolation between different zones. Every time a new well is drilled, actual formation tops are picked using various methods such as rate of penetration (ROP) charts, gamma ray (GR), formation cuttings and mud logging. These data are used in updating the geological model and in ensuring a proper zonal isolation in critical sections. Each of these methods has its own advantages and limitations such as cost, accuracy, and man power. Most of these methods suffer from a lag in time or depth which prevents the formation tops from being picked instantaneously. The goal of this paper is to introduce a better method for picking formation tops. It can be a potential alternative to replace other more expensive techniques. The new technique involves the use of drilling mechanical parameters along with the rate of penetration to increase the accuracy of prediction. This will help to detect a true increase or decrease in ROP even if the drilling parameters are fluctuating. Field data were gathered from two wells with the same bit size and the same formation type. The data were screened and cleaned from any outliers or noise using six different algorithms while retaining the data quality and representation. Using six inputs and four outputs, 30 different sensitivity analyses were conducted including using artificial neural network (ANN) to achieve the best results and prediction accuracy. Well-A was used to train and test the data with 70/30 ratio, while well-B was totally unseen data. The results obtained showed that ANN can predict formation tops with great accuracy. The best result was found using ANN with 20 neurons and one layer in which correlation of coefficient (R) was 0.94 and 0.98 for both wells. With this new technique, detecting formation changes will be faster compared to other methods since no logs have to be processed and nor any wait is required for cuttings to reach the surface. The formations can therefore be picked in real-time with good accuracy at almost no extra costs because it uses the real-time data which is already available." @default.
- W2896965424 created "2018-10-26" @default.
- W2896965424 creator A5027294374 @default.
- W2896965424 creator A5046818830 @default.
- W2896965424 creator A5049649985 @default.
- W2896965424 creator A5053834729 @default.
- W2896965424 date "2018-04-23" @default.
- W2896965424 modified "2023-10-03" @default.
- W2896965424 title "Predicting Formation Tops while Drilling Using Artificial Intelligence" @default.
- W2896965424 cites W1984901009 @default.
- W2896965424 cites W1989222035 @default.
- W2896965424 cites W2003120057 @default.
- W2896965424 cites W2013345849 @default.
- W2896965424 cites W2021098490 @default.
- W2896965424 cites W2027067114 @default.
- W2896965424 cites W2040373785 @default.
- W2896965424 cites W2051845405 @default.
- W2896965424 cites W2085654994 @default.
- W2896965424 cites W2136971218 @default.
- W2896965424 cites W2514971423 @default.
- W2896965424 cites W2580773761 @default.
- W2896965424 cites W2621145650 @default.
- W2896965424 doi "https://doi.org/10.2118/192345-ms" @default.
- W2896965424 hasPublicationYear "2018" @default.
- W2896965424 type Work @default.
- W2896965424 sameAs 2896965424 @default.
- W2896965424 citedByCount "19" @default.
- W2896965424 countsByYear W28969654242019 @default.
- W2896965424 countsByYear W28969654242020 @default.
- W2896965424 countsByYear W28969654242021 @default.
- W2896965424 countsByYear W28969654242022 @default.
- W2896965424 countsByYear W28969654242023 @default.
- W2896965424 crossrefType "proceedings-article" @default.
- W2896965424 hasAuthorship W2896965424A5027294374 @default.
- W2896965424 hasAuthorship W2896965424A5046818830 @default.
- W2896965424 hasAuthorship W2896965424A5049649985 @default.
- W2896965424 hasAuthorship W2896965424A5053834729 @default.
- W2896965424 hasConcept C124101348 @default.
- W2896965424 hasConcept C127313418 @default.
- W2896965424 hasConcept C127413603 @default.
- W2896965424 hasConcept C154815118 @default.
- W2896965424 hasConcept C154945302 @default.
- W2896965424 hasConcept C25197100 @default.
- W2896965424 hasConcept C2776497017 @default.
- W2896965424 hasConcept C2777675136 @default.
- W2896965424 hasConcept C30399818 @default.
- W2896965424 hasConcept C41008148 @default.
- W2896965424 hasConcept C50644808 @default.
- W2896965424 hasConcept C78519656 @default.
- W2896965424 hasConcept C78762247 @default.
- W2896965424 hasConcept C79337645 @default.
- W2896965424 hasConceptScore W2896965424C124101348 @default.
- W2896965424 hasConceptScore W2896965424C127313418 @default.
- W2896965424 hasConceptScore W2896965424C127413603 @default.
- W2896965424 hasConceptScore W2896965424C154815118 @default.
- W2896965424 hasConceptScore W2896965424C154945302 @default.
- W2896965424 hasConceptScore W2896965424C25197100 @default.
- W2896965424 hasConceptScore W2896965424C2776497017 @default.
- W2896965424 hasConceptScore W2896965424C2777675136 @default.
- W2896965424 hasConceptScore W2896965424C30399818 @default.
- W2896965424 hasConceptScore W2896965424C41008148 @default.
- W2896965424 hasConceptScore W2896965424C50644808 @default.
- W2896965424 hasConceptScore W2896965424C78519656 @default.
- W2896965424 hasConceptScore W2896965424C78762247 @default.
- W2896965424 hasConceptScore W2896965424C79337645 @default.
- W2896965424 hasLocation W28969654241 @default.
- W2896965424 hasOpenAccess W2896965424 @default.
- W2896965424 hasPrimaryLocation W28969654241 @default.
- W2896965424 hasRelatedWork W1973610720 @default.
- W2896965424 hasRelatedWork W2046750100 @default.
- W2896965424 hasRelatedWork W2076077805 @default.
- W2896965424 hasRelatedWork W2328256654 @default.
- W2896965424 hasRelatedWork W2349079371 @default.
- W2896965424 hasRelatedWork W2361626284 @default.
- W2896965424 hasRelatedWork W2361816772 @default.
- W2896965424 hasRelatedWork W2999613987 @default.
- W2896965424 hasRelatedWork W3205733090 @default.
- W2896965424 hasRelatedWork W4206605573 @default.
- W2896965424 isParatext "false" @default.
- W2896965424 isRetracted "false" @default.
- W2896965424 magId "2896965424" @default.
- W2896965424 workType "article" @default.