Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896971667> ?p ?o ?g. }
- W2896971667 endingPage "2925" @default.
- W2896971667 startingPage "2918" @default.
- W2896971667 abstract "Ages of history are defined by the underlying materials that promoted human development: stone, bronze, and iron ages. Since the middle of the last century, humanity has lived in a silicon age, where the development of the transistor ushered in new technologies previously thought inconceivable. But as technology has advanced, so have the requirements for new materials to sustain increasing physical demands. The field of solid state chemistry is dedicated to the discovery of new materials and phenomena, and though most materials discoveries in history have been through serendipity rather than careful reaction design, the last few decades have seen an increase in the number of materials discovered through a consideration of chemical reaction kinetics and thermodynamics. Materials by design have changed the way solid state chemists approach the synthesis of possible materials with interesting and useful properties. Unlike other chemistry subfields such as organic chemistry and biochemistry, solid state chemistry does not currently benefit from a toolbox of reactions that can allow for the synthesis of any arbitrary material. The diversity and complexity of the solid state phase space likely inhibits chemists from ever having such a toolbox. However, a thorough understanding of the various synthetic techniques involved in the synthesis of stable and metastable solids may be realized through an understanding of the reaction kinetics and thermodynamics. In the Account, we review the common synthesis techniques involved in the formation of metastable materials and break down their underlying chemistry to the simplest reaction mechanisms involved. The synthesis reactions of most metastable materials can be understood through these three reaction driving parameters, which include the exploitation of Le Chatelier's principle, thermo-kinetic reaction coupling, and lowering the activation energy of formation of the metastable product, and we identify several materials whose syntheses are described either by one or a combination of these driving parameters. We identify what exists at the frontier of materials discovery by design, including novel applications of supercritical fluids for tuning between gas and solvent-like environments. While conventional solvation requires changes in either the temperature or composition of the system, supercritical fluid solvation requires only changes in the fluid density, which opens up the possibilities for the synthesis of new materials. Most importantly, however, we look toward the future of materials synthesis by design and see that it must be a collaborative one. At present, chemists design materials using knowledge about chemical structure and reactivity but often target specific materials with very specific properties. In contrast, computational chemists perform calculations on millions of different elemental combinations and find many candidates of possible materials with interesting properties, though most of these are not realizable synthetically due to limitations in reactivity, kinetics, or thermodynamics. Synthetic harmony can be achieved through active collaboration and communication between these two subfields of chemistry, such that new calculations can incorporate complete knowledge about reaction kinetics and thermodynamics, and new syntheses target computationally predicted materials derived from an understanding of mapped reaction landscapes." @default.
- W2896971667 created "2018-10-26" @default.
- W2896971667 creator A5040550673 @default.
- W2896971667 creator A5067206769 @default.
- W2896971667 date "2018-11-20" @default.
- W2896971667 modified "2023-10-17" @default.
- W2896971667 title "Progress toward Solid State Synthesis by Design." @default.
- W2896971667 cites W1636878849 @default.
- W2896971667 cites W1892521065 @default.
- W2896971667 cites W1905539406 @default.
- W2896971667 cites W1965245884 @default.
- W2896971667 cites W1965464747 @default.
- W2896971667 cites W1966323201 @default.
- W2896971667 cites W1967350625 @default.
- W2896971667 cites W1967499431 @default.
- W2896971667 cites W1968412802 @default.
- W2896971667 cites W1970849343 @default.
- W2896971667 cites W1971272802 @default.
- W2896971667 cites W1972632637 @default.
- W2896971667 cites W1973742777 @default.
- W2896971667 cites W1975208353 @default.
- W2896971667 cites W1982598895 @default.
- W2896971667 cites W1985284024 @default.
- W2896971667 cites W1985786341 @default.
- W2896971667 cites W1990324553 @default.
- W2896971667 cites W1991886132 @default.
- W2896971667 cites W1992985800 @default.
- W2896971667 cites W1994707509 @default.
- W2896971667 cites W1996959617 @default.
- W2896971667 cites W2004669139 @default.
- W2896971667 cites W2015811725 @default.
- W2896971667 cites W2021110564 @default.
- W2896971667 cites W2023409863 @default.
- W2896971667 cites W2026917765 @default.
- W2896971667 cites W2030165533 @default.
- W2896971667 cites W2031028572 @default.
- W2896971667 cites W2033986072 @default.
- W2896971667 cites W2034050716 @default.
- W2896971667 cites W2035999947 @default.
- W2896971667 cites W2041726686 @default.
- W2896971667 cites W2042328539 @default.
- W2896971667 cites W2043072234 @default.
- W2896971667 cites W2043175787 @default.
- W2896971667 cites W2051260051 @default.
- W2896971667 cites W2056473244 @default.
- W2896971667 cites W2063358416 @default.
- W2896971667 cites W2074475022 @default.
- W2896971667 cites W2075978705 @default.
- W2896971667 cites W2077719023 @default.
- W2896971667 cites W2080445869 @default.
- W2896971667 cites W2080496362 @default.
- W2896971667 cites W2103763354 @default.
- W2896971667 cites W2115786064 @default.
- W2896971667 cites W2116049427 @default.
- W2896971667 cites W2134853179 @default.
- W2896971667 cites W2149208519 @default.
- W2896971667 cites W2152510783 @default.
- W2896971667 cites W2152523376 @default.
- W2896971667 cites W2171303374 @default.
- W2896971667 cites W2269427755 @default.
- W2896971667 cites W2300660700 @default.
- W2896971667 cites W2314320532 @default.
- W2896971667 cites W2315566028 @default.
- W2896971667 cites W2318609780 @default.
- W2896971667 cites W2320280737 @default.
- W2896971667 cites W2327951481 @default.
- W2896971667 cites W2347129741 @default.
- W2896971667 cites W2409039558 @default.
- W2896971667 cites W2570338462 @default.
- W2896971667 cites W2801443735 @default.
- W2896971667 cites W2808340627 @default.
- W2896971667 cites W2830440988 @default.
- W2896971667 cites W2946325019 @default.
- W2896971667 cites W2950461732 @default.
- W2896971667 cites W2951373302 @default.
- W2896971667 cites W2951393901 @default.
- W2896971667 doi "https://doi.org/10.1021/acs.accounts.8b00382" @default.
- W2896971667 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30299082" @default.
- W2896971667 hasPublicationYear "2018" @default.
- W2896971667 type Work @default.
- W2896971667 sameAs 2896971667 @default.
- W2896971667 citedByCount "47" @default.
- W2896971667 countsByYear W28969716672019 @default.
- W2896971667 countsByYear W28969716672020 @default.
- W2896971667 countsByYear W28969716672021 @default.
- W2896971667 countsByYear W28969716672022 @default.
- W2896971667 countsByYear W28969716672023 @default.
- W2896971667 crossrefType "journal-article" @default.
- W2896971667 hasAuthorship W2896971667A5040550673 @default.
- W2896971667 hasAuthorship W2896971667A5067206769 @default.
- W2896971667 hasConcept C114420478 @default.
- W2896971667 hasConcept C171250308 @default.
- W2896971667 hasConcept C178790620 @default.
- W2896971667 hasConcept C185592680 @default.
- W2896971667 hasConcept C192562407 @default.
- W2896971667 hasConcept C199360897 @default.
- W2896971667 hasConcept C2777655017 @default.
- W2896971667 hasConcept C41008148 @default.