Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896974626> ?p ?o ?g. }
- W2896974626 endingPage "2917" @default.
- W2896974626 startingPage "2906" @default.
- W2896974626 abstract "The utilization of fossil fuels (i.e., coal, petroleum, and natural gas) as the main energy source gives rise to serious environmental issues, including global warming caused by the continuously increasing level of atmospheric CO2. To deal with this challenge, fossil fuels are being partially replaced by renewable energy such as solar and wind. However, such energy sources are usually intermittent and currently constitute a very low portion of the overall energy consumption. Recently, the electrochemical conversion of CO2 to chemicals and fuels with high energy density driven by electricity derived from renewable energy has been recognized as a promising strategy toward sustainable energy. The activation and reduction of CO2, which is a thermodynamically stable and kinetically inert molecule, is extremely challenging. Although the participation of protons in the CO2 electroreduction reaction (CO2RR) helps lower the energy barrier, high overpotentials are still needed to efficiently drive the process. On the other hand, the concurrent hydrogen evolution reaction (HER) under CO2RR conditions leads to lower selectivity toward CO2RR products. Electrocatalysts that are highly active and selective for multicarbon products are urgently needed to improve the energy efficiency of CO2RR. The reduction of CO2 involves multiple proton-electron transfers and has many complex intermediates. Recent reports have shown that the relative stability of the intermediates on the surface of catalysts determines final reaction pathways as well as the product selectivity. Furthermore, this reaction displays a strong structure-sensitivity. The atomic arrangement, electronic structure, chemical composition, and oxidation state of the catalysts significantly influence catalyst performance. Fundamental understanding of the dependence of the reaction mechanisms on the catalyst structure would guide the rational design of new nanostructured CO2RR catalysts. As a reaction proceeding in a complex environment containing gas/liquid/solid interfaces, CO2RR is also intensively affected by the electrolyte. The electrolyte composition in the near surface region of the electrode where the reaction takes place plays a vital role in the reactivity. However, the former might also be indirectly determined by the bulk electrolyte composition via diffusion. Adding to the complexity, the structure, chemical state and surface composition of the catalysts under reaction conditions usually undergo dynamic changes, especially when adsorbed ions are considered. Therefore, in addition to tuning the structure of the electrocatalysts, being able to also modify the electrolyte provides an alternative method to tune the activity and selectivity of CO2RR. In situ and operando characterization methods must be employed to gain in depth understanding on the structure- and electrolyte-sensitivity of real CO2RR catalysts under working conditions. This Account provides examples of recent advances in the development of nanostructured catalysts and mechanistic understanding of CO2RR. It discusses how the structure of a catalyst (crystal orientation, oxidation state, atomic arrangement, defects, size, surface composition, segregation, etc.) influences the activity and selectivity, and how the electrolyte also plays a determining role in the reaction activity and selectivity. Finally, the importance of in situ and operando characterization methods to understand the structure- and electrolyte-sensitivity of the CO2RR is discussed." @default.
- W2896974626 created "2018-10-26" @default.
- W2896974626 creator A5058030839 @default.
- W2896974626 creator A5065326930 @default.
- W2896974626 creator A5072838762 @default.
- W2896974626 date "2018-10-18" @default.
- W2896974626 modified "2023-10-12" @default.
- W2896974626 title "Structure- and Electrolyte-Sensitivity in CO<sub>2</sub> Electroreduction" @default.
- W2896974626 cites W1965362556 @default.
- W2896974626 cites W1975526738 @default.
- W2896974626 cites W1994204840 @default.
- W2896974626 cites W1997233576 @default.
- W2896974626 cites W2002516293 @default.
- W2896974626 cites W2011564123 @default.
- W2896974626 cites W2046236942 @default.
- W2896974626 cites W2049649172 @default.
- W2896974626 cites W2060023027 @default.
- W2896974626 cites W2082498048 @default.
- W2896974626 cites W2087460773 @default.
- W2896974626 cites W2137818170 @default.
- W2896974626 cites W2158532118 @default.
- W2896974626 cites W2166116801 @default.
- W2896974626 cites W2202057872 @default.
- W2896974626 cites W2234779942 @default.
- W2896974626 cites W2275870655 @default.
- W2896974626 cites W2282681552 @default.
- W2896974626 cites W2312983667 @default.
- W2896974626 cites W2318118246 @default.
- W2896974626 cites W2319865050 @default.
- W2896974626 cites W2325144921 @default.
- W2896974626 cites W2326170978 @default.
- W2896974626 cites W2326928258 @default.
- W2896974626 cites W2330888951 @default.
- W2896974626 cites W2333668949 @default.
- W2896974626 cites W2341707936 @default.
- W2896974626 cites W2343511514 @default.
- W2896974626 cites W2346642582 @default.
- W2896974626 cites W2411411243 @default.
- W2896974626 cites W2461569136 @default.
- W2896974626 cites W2520463722 @default.
- W2896974626 cites W2520778196 @default.
- W2896974626 cites W2528655061 @default.
- W2896974626 cites W2531985189 @default.
- W2896974626 cites W2552233834 @default.
- W2896974626 cites W2553965364 @default.
- W2896974626 cites W2561854106 @default.
- W2896974626 cites W2573964255 @default.
- W2896974626 cites W2578967457 @default.
- W2896974626 cites W2583169783 @default.
- W2896974626 cites W2586083027 @default.
- W2896974626 cites W2588520044 @default.
- W2896974626 cites W2592900992 @default.
- W2896974626 cites W2604354802 @default.
- W2896974626 cites W2608300873 @default.
- W2896974626 cites W2619141030 @default.
- W2896974626 cites W2620265355 @default.
- W2896974626 cites W2625339367 @default.
- W2896974626 cites W2625918461 @default.
- W2896974626 cites W2626885970 @default.
- W2896974626 cites W2698517883 @default.
- W2896974626 cites W2736202589 @default.
- W2896974626 cites W2742629868 @default.
- W2896974626 cites W2743776038 @default.
- W2896974626 cites W2749923946 @default.
- W2896974626 cites W2751014015 @default.
- W2896974626 cites W2755271205 @default.
- W2896974626 cites W2761329828 @default.
- W2896974626 cites W2763833008 @default.
- W2896974626 cites W2764155932 @default.
- W2896974626 cites W2765422782 @default.
- W2896974626 cites W2767138048 @default.
- W2896974626 cites W2769548155 @default.
- W2896974626 cites W2772769038 @default.
- W2896974626 cites W2773565607 @default.
- W2896974626 cites W2779952271 @default.
- W2896974626 cites W2782968955 @default.
- W2896974626 cites W2789690957 @default.
- W2896974626 cites W2790006205 @default.
- W2896974626 cites W2793543406 @default.
- W2896974626 cites W2804235153 @default.
- W2896974626 cites W2805521597 @default.
- W2896974626 cites W2883336409 @default.
- W2896974626 cites W2147139866 @default.
- W2896974626 doi "https://doi.org/10.1021/acs.accounts.8b00360" @default.
- W2896974626 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30335937" @default.
- W2896974626 hasPublicationYear "2018" @default.
- W2896974626 type Work @default.
- W2896974626 sameAs 2896974626 @default.
- W2896974626 citedByCount "214" @default.
- W2896974626 countsByYear W28969746262018 @default.
- W2896974626 countsByYear W28969746262019 @default.
- W2896974626 countsByYear W28969746262020 @default.
- W2896974626 countsByYear W28969746262021 @default.
- W2896974626 countsByYear W28969746262022 @default.
- W2896974626 countsByYear W28969746262023 @default.
- W2896974626 crossrefType "journal-article" @default.
- W2896974626 hasAuthorship W2896974626A5058030839 @default.
- W2896974626 hasAuthorship W2896974626A5065326930 @default.