Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896983410> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2896983410 abstract "Defect prediction can help predict defect-prone software modules and improve the efficiency and accuracy of defect location and repair, which plays an extremely important role in software quality assurance. Artificial Neural Networks (ANNs), a family of powerful machine learning regression or classification models, have been widely applied for defect prediction. However, the performance of these models will be degraded if they use suboptimal default parameter settings (e.g., the number of units in the hidden layer). This paper utilizes an automated parameter tuning technique-Caret to optimize parameter settings. In our study, 30 datasets are downloaded from the Tera-PROMISE Repository. According to the characteristics of the datasets, we select key features (metrics) as predictors to train defect prediction models. The experiment applies feed-forward, single hidden layer artificial neural network as classifier to build different defect prediction models respectively with optimized parameter settings and with default parameter settings. Confusion matrix and ROC curve are used for evaluating the quality of the models above. The results show that the models trained with optimized parameter settings outperform the models trained with default parameter settings. Hence, we suggest that researchers should pay attention to tuning parameter settings by Caret for ANNs instead of using suboptimal default settings if they select ANNs for training models in the future defect prediction studies." @default.
- W2896983410 created "2018-10-26" @default.
- W2896983410 creator A5075387862 @default.
- W2896983410 creator A5086778602 @default.
- W2896983410 date "2018-06-16" @default.
- W2896983410 modified "2023-09-23" @default.
- W2896983410 title "Automated Parameter Tuning of Artificial Neural Networks for Software Defect Prediction" @default.
- W2896983410 cites W1571401318 @default.
- W2896983410 cites W1831050183 @default.
- W2896983410 cites W1982664399 @default.
- W2896983410 cites W1994908235 @default.
- W2896983410 cites W1995341919 @default.
- W2896983410 cites W2025700486 @default.
- W2896983410 cites W2038410048 @default.
- W2896983410 cites W2086184041 @default.
- W2896983410 cites W2108604074 @default.
- W2896983410 cites W2158864412 @default.
- W2896983410 cites W2338571852 @default.
- W2896983410 cites W2342639439 @default.
- W2896983410 cites W2513708786 @default.
- W2896983410 cites W2617227509 @default.
- W2896983410 cites W2731161895 @default.
- W2896983410 cites W2743521762 @default.
- W2896983410 cites W2781897886 @default.
- W2896983410 cites W2789977158 @default.
- W2896983410 cites W4206192975 @default.
- W2896983410 doi "https://doi.org/10.1145/3239576.3239622" @default.
- W2896983410 hasPublicationYear "2018" @default.
- W2896983410 type Work @default.
- W2896983410 sameAs 2896983410 @default.
- W2896983410 citedByCount "1" @default.
- W2896983410 countsByYear W28969834102023 @default.
- W2896983410 crossrefType "proceedings-article" @default.
- W2896983410 hasAuthorship W2896983410A5075387862 @default.
- W2896983410 hasAuthorship W2896983410A5086778602 @default.
- W2896983410 hasConcept C106436119 @default.
- W2896983410 hasConcept C119857082 @default.
- W2896983410 hasConcept C124101348 @default.
- W2896983410 hasConcept C127413603 @default.
- W2896983410 hasConcept C138602881 @default.
- W2896983410 hasConcept C154945302 @default.
- W2896983410 hasConcept C199360897 @default.
- W2896983410 hasConcept C21547014 @default.
- W2896983410 hasConcept C2777904410 @default.
- W2896983410 hasConcept C2778618615 @default.
- W2896983410 hasConcept C41008148 @default.
- W2896983410 hasConcept C45804977 @default.
- W2896983410 hasConcept C50644808 @default.
- W2896983410 hasConcept C95623464 @default.
- W2896983410 hasConceptScore W2896983410C106436119 @default.
- W2896983410 hasConceptScore W2896983410C119857082 @default.
- W2896983410 hasConceptScore W2896983410C124101348 @default.
- W2896983410 hasConceptScore W2896983410C127413603 @default.
- W2896983410 hasConceptScore W2896983410C138602881 @default.
- W2896983410 hasConceptScore W2896983410C154945302 @default.
- W2896983410 hasConceptScore W2896983410C199360897 @default.
- W2896983410 hasConceptScore W2896983410C21547014 @default.
- W2896983410 hasConceptScore W2896983410C2777904410 @default.
- W2896983410 hasConceptScore W2896983410C2778618615 @default.
- W2896983410 hasConceptScore W2896983410C41008148 @default.
- W2896983410 hasConceptScore W2896983410C45804977 @default.
- W2896983410 hasConceptScore W2896983410C50644808 @default.
- W2896983410 hasConceptScore W2896983410C95623464 @default.
- W2896983410 hasFunder F4320334835 @default.
- W2896983410 hasLocation W28969834101 @default.
- W2896983410 hasOpenAccess W2896983410 @default.
- W2896983410 hasPrimaryLocation W28969834101 @default.
- W2896983410 hasRelatedWork W2246041436 @default.
- W2896983410 hasRelatedWork W2556319748 @default.
- W2896983410 hasRelatedWork W2961085424 @default.
- W2896983410 hasRelatedWork W3200179079 @default.
- W2896983410 hasRelatedWork W4231994957 @default.
- W2896983410 hasRelatedWork W4249229055 @default.
- W2896983410 hasRelatedWork W4361795583 @default.
- W2896983410 hasRelatedWork W1629725936 @default.
- W2896983410 hasRelatedWork W3124024302 @default.
- W2896983410 hasRelatedWork W3128021027 @default.
- W2896983410 isParatext "false" @default.
- W2896983410 isRetracted "false" @default.
- W2896983410 magId "2896983410" @default.
- W2896983410 workType "article" @default.