Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896984146> ?p ?o ?g. }
- W2896984146 endingPage "3371" @default.
- W2896984146 startingPage "3371" @default.
- W2896984146 abstract "Excellent pattern matching capability makes artificial neural networks (ANNs) a very promising approach for vibration-based structural health monitoring (SHM). The proper design of the network architecture with the suitable complexity is vital to the ANN-based structural damage detection. In addition to the number of hidden neurons, the type of transfer function used in the hidden layer cannot be neglected for the ANN design. Neural network learning can be further presented in the framework of Bayesian statistics, but the issues of selection for the hidden layer transfer function with respect to the Bayesian neural network has not yet been reported in the literature. In addition, most of the research works in the literature for addressing the predictive distribution of neural network output is only for a single target variable, while multiple target variables are rarely involved. In the present paper, for the purpose of probabilistic structural damage detection, Bayesian neural networks with multiple target variables are optimally designed, and the selection of the number of neurons, and the transfer function in the hidden layer, are carried out simultaneously to achieve a neural network architecture with suitable complexity. Furthermore, the nonlinear network function can be approximately linear by assuming the posterior distribution of network parameters is a sufficiently narrow Gaussian, and then the input-dependent covariance matrix of the predictive distribution of network output can be obtained with the Gaussian assumption for the situation of multiple target variables. Structural damage detection is conducted for a steel truss bridge model to verify the proposed method through a set of numerical case studies." @default.
- W2896984146 created "2018-10-26" @default.
- W2896984146 creator A5008292215 @default.
- W2896984146 creator A5070871777 @default.
- W2896984146 date "2018-10-09" @default.
- W2896984146 modified "2023-10-10" @default.
- W2896984146 title "Probabilistic Damage Detection of a Steel Truss Bridge Model by Optimally Designed Bayesian Neural Network" @default.
- W2896984146 cites W1499456666 @default.
- W2896984146 cites W1974964201 @default.
- W2896984146 cites W1997568907 @default.
- W2896984146 cites W1998817801 @default.
- W2896984146 cites W2000874685 @default.
- W2896984146 cites W2004338573 @default.
- W2896984146 cites W2007820586 @default.
- W2896984146 cites W2024018375 @default.
- W2896984146 cites W2025200809 @default.
- W2896984146 cites W2040355924 @default.
- W2896984146 cites W2056500717 @default.
- W2896984146 cites W2060937547 @default.
- W2896984146 cites W2065385043 @default.
- W2896984146 cites W2075885267 @default.
- W2896984146 cites W2084376690 @default.
- W2896984146 cites W2086798417 @default.
- W2896984146 cites W2089496109 @default.
- W2896984146 cites W2103496339 @default.
- W2896984146 cites W2108729232 @default.
- W2896984146 cites W2111051539 @default.
- W2896984146 cites W2114313222 @default.
- W2896984146 cites W2116689067 @default.
- W2896984146 cites W2124790594 @default.
- W2896984146 cites W2129619441 @default.
- W2896984146 cites W2161315230 @default.
- W2896984146 cites W2221175250 @default.
- W2896984146 cites W2268516117 @default.
- W2896984146 cites W2443985597 @default.
- W2896984146 cites W2472411061 @default.
- W2896984146 cites W2547960182 @default.
- W2896984146 cites W2556429591 @default.
- W2896984146 cites W2765257681 @default.
- W2896984146 cites W2807036865 @default.
- W2896984146 cites W3124399172 @default.
- W2896984146 cites W2080258567 @default.
- W2896984146 doi "https://doi.org/10.3390/s18103371" @default.
- W2896984146 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6209863" @default.
- W2896984146 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30304848" @default.
- W2896984146 hasPublicationYear "2018" @default.
- W2896984146 type Work @default.
- W2896984146 sameAs 2896984146 @default.
- W2896984146 citedByCount "21" @default.
- W2896984146 countsByYear W28969841462019 @default.
- W2896984146 countsByYear W28969841462020 @default.
- W2896984146 countsByYear W28969841462021 @default.
- W2896984146 countsByYear W28969841462022 @default.
- W2896984146 countsByYear W28969841462023 @default.
- W2896984146 crossrefType "journal-article" @default.
- W2896984146 hasAuthorship W2896984146A5008292215 @default.
- W2896984146 hasAuthorship W2896984146A5070871777 @default.
- W2896984146 hasBestOaLocation W28969841461 @default.
- W2896984146 hasConcept C11413529 @default.
- W2896984146 hasConcept C119857082 @default.
- W2896984146 hasConcept C127413603 @default.
- W2896984146 hasConcept C134342201 @default.
- W2896984146 hasConcept C153180895 @default.
- W2896984146 hasConcept C154945302 @default.
- W2896984146 hasConcept C175202392 @default.
- W2896984146 hasConcept C193415008 @default.
- W2896984146 hasConcept C2776247918 @default.
- W2896984146 hasConcept C33724603 @default.
- W2896984146 hasConcept C38652104 @default.
- W2896984146 hasConcept C41008148 @default.
- W2896984146 hasConcept C49937458 @default.
- W2896984146 hasConcept C50644808 @default.
- W2896984146 hasConcept C66938386 @default.
- W2896984146 hasConceptScore W2896984146C11413529 @default.
- W2896984146 hasConceptScore W2896984146C119857082 @default.
- W2896984146 hasConceptScore W2896984146C127413603 @default.
- W2896984146 hasConceptScore W2896984146C134342201 @default.
- W2896984146 hasConceptScore W2896984146C153180895 @default.
- W2896984146 hasConceptScore W2896984146C154945302 @default.
- W2896984146 hasConceptScore W2896984146C175202392 @default.
- W2896984146 hasConceptScore W2896984146C193415008 @default.
- W2896984146 hasConceptScore W2896984146C2776247918 @default.
- W2896984146 hasConceptScore W2896984146C33724603 @default.
- W2896984146 hasConceptScore W2896984146C38652104 @default.
- W2896984146 hasConceptScore W2896984146C41008148 @default.
- W2896984146 hasConceptScore W2896984146C49937458 @default.
- W2896984146 hasConceptScore W2896984146C50644808 @default.
- W2896984146 hasConceptScore W2896984146C66938386 @default.
- W2896984146 hasFunder F4320321001 @default.
- W2896984146 hasIssue "10" @default.
- W2896984146 hasLocation W28969841461 @default.
- W2896984146 hasLocation W28969841462 @default.
- W2896984146 hasLocation W28969841463 @default.
- W2896984146 hasLocation W28969841464 @default.
- W2896984146 hasLocation W28969841465 @default.
- W2896984146 hasOpenAccess W2896984146 @default.
- W2896984146 hasPrimaryLocation W28969841461 @default.
- W2896984146 hasRelatedWork W1734881440 @default.