Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896984162> ?p ?o ?g. }
- W2896984162 endingPage "424" @default.
- W2896984162 startingPage "408" @default.
- W2896984162 abstract "Online imaging and neuromodulation is invalid if stimulation distorts measurements beyond the point of accurate measurement. In theory, combining transcranial Direct Current Stimulation (tDCS) with electroencephalography (EEG) is compelling, as both use non-invasive electrodes and image-guided dose can be informed by the reciprocity principle. To distinguish real changes in EEG from stimulation artifacts, prior studies applied conventional signal processing techniques (e.g. high-pass filtering, ICA). Here, we address the assumptions underlying the suitability of these approaches. We distinguish physiological artifacts - defined as artifacts resulting from interactions between the stimulation induced voltage and the body and so inherent regardless of tDCS or EEG hardware performance - from methodology-related artifacts - arising from non-ideal experimental conditions or non-ideal stimulation and recording equipment performance. Critically, we identify inherent physiological artifacts which are present in all online EEG-tDCS: 1) cardiac distortion and 2) ocular motor distortion. In conjunction, non-inherent physiological artifacts which can be minimized in most experimental conditions include: 1) motion and 2) myogenic distortion. Artifact dynamics were analyzed for varying stimulation parameters (montage, polarity, current) and stimulation hardware. Together with concurrent physiological monitoring (ECG, respiration, ocular, EMG, head motion), and current flow modeling, each physiological artifact was explained by biological source-specific body impedance changes, leading to incremental changes in scalp DC voltage that are significantly larger than real neural signals. Because these artifacts modulate the DC voltage and scale with applied current, they are dose specific such that their contamination cannot be accounted for by conventional experimental controls (e.g. differing stimulation montage or current as a control). Moreover, because the EEG artifacts introduced by physiologic processes during tDCS are high dimensional (as indicated by Generalized Singular Value Decomposition- GSVD), non-stationary, and overlap highly with neurogenic frequencies, these artifacts cannot be easily removed with conventional signal processing techniques. Spatial filtering techniques (GSVD) suggest that the removal of physiological artifacts would significantly degrade signal integrity. Physiological artifacts, as defined here, would emerge only during tDCS, thus processing techniques typically applied to EEG in the absence of tDCS would not be suitable for artifact removal during tDCS. All concurrent EEG-tDCS must account for physiological artifacts that are a) present regardless of equipment used, and b) broadband and confound a broad range of experiments (e.g. oscillatory activity and event related potentials). Removal of these artifacts requires the recognition of their non-stationary, physiology-specific dynamics, and individualized nature. We present a broad taxonomy of artifacts (non/stimulation related), and suggest possible approaches and challenges to denoising online EEG-tDCS stimulation artifacts." @default.
- W2896984162 created "2018-10-26" @default.
- W2896984162 creator A5001501158 @default.
- W2896984162 creator A5009102481 @default.
- W2896984162 creator A5018194134 @default.
- W2896984162 creator A5025915090 @default.
- W2896984162 creator A5035340679 @default.
- W2896984162 creator A5061473412 @default.
- W2896984162 creator A5067697868 @default.
- W2896984162 creator A5076155222 @default.
- W2896984162 creator A5079902276 @default.
- W2896984162 date "2019-01-01" @default.
- W2896984162 modified "2023-10-14" @default.
- W2896984162 title "Inherent physiological artifacts in EEG during tDCS" @default.
- W2896984162 cites W142180325 @default.
- W2896984162 cites W1603549581 @default.
- W2896984162 cites W1769891603 @default.
- W2896984162 cites W1925510761 @default.
- W2896984162 cites W1926130547 @default.
- W2896984162 cites W1965776522 @default.
- W2896984162 cites W1965952814 @default.
- W2896984162 cites W1967127568 @default.
- W2896984162 cites W1968435421 @default.
- W2896984162 cites W1975331269 @default.
- W2896984162 cites W1977500242 @default.
- W2896984162 cites W1986318128 @default.
- W2896984162 cites W1990853178 @default.
- W2896984162 cites W1992236055 @default.
- W2896984162 cites W1998574272 @default.
- W2896984162 cites W2011618068 @default.
- W2896984162 cites W2015094397 @default.
- W2896984162 cites W2017144821 @default.
- W2896984162 cites W2017334809 @default.
- W2896984162 cites W2019926903 @default.
- W2896984162 cites W2026352631 @default.
- W2896984162 cites W2029189665 @default.
- W2896984162 cites W2029193611 @default.
- W2896984162 cites W2034283454 @default.
- W2896984162 cites W2040858483 @default.
- W2896984162 cites W2067665885 @default.
- W2896984162 cites W2067756228 @default.
- W2896984162 cites W2069659976 @default.
- W2896984162 cites W2072244393 @default.
- W2896984162 cites W2075523943 @default.
- W2896984162 cites W2076851557 @default.
- W2896984162 cites W2098986014 @default.
- W2896984162 cites W2101845113 @default.
- W2896984162 cites W2110075977 @default.
- W2896984162 cites W2112469598 @default.
- W2896984162 cites W2117687905 @default.
- W2896984162 cites W2123171443 @default.
- W2896984162 cites W2126659945 @default.
- W2896984162 cites W2128495200 @default.
- W2896984162 cites W2131078489 @default.
- W2896984162 cites W2133105966 @default.
- W2896984162 cites W2141250485 @default.
- W2896984162 cites W2147219572 @default.
- W2896984162 cites W2148445185 @default.
- W2896984162 cites W2148532693 @default.
- W2896984162 cites W2157458634 @default.
- W2896984162 cites W2158394922 @default.
- W2896984162 cites W2158956772 @default.
- W2896984162 cites W2159565016 @default.
- W2896984162 cites W2164138781 @default.
- W2896984162 cites W2165530068 @default.
- W2896984162 cites W2167554141 @default.
- W2896984162 cites W2168437099 @default.
- W2896984162 cites W2175101749 @default.
- W2896984162 cites W2216821079 @default.
- W2896984162 cites W2237768435 @default.
- W2896984162 cites W2276593259 @default.
- W2896984162 cites W2296366811 @default.
- W2896984162 cites W2329406888 @default.
- W2896984162 cites W2337714909 @default.
- W2896984162 cites W2338869158 @default.
- W2896984162 cites W2372358471 @default.
- W2896984162 cites W2398442876 @default.
- W2896984162 cites W2415486364 @default.
- W2896984162 cites W2436810693 @default.
- W2896984162 cites W2538391214 @default.
- W2896984162 cites W2580823123 @default.
- W2896984162 cites W2584996103 @default.
- W2896984162 cites W2587386871 @default.
- W2896984162 cites W2610340906 @default.
- W2896984162 cites W2949119193 @default.
- W2896984162 cites W2952019187 @default.
- W2896984162 cites W899636671 @default.
- W2896984162 doi "https://doi.org/10.1016/j.neuroimage.2018.10.025" @default.
- W2896984162 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6289749" @default.
- W2896984162 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30321643" @default.
- W2896984162 hasPublicationYear "2019" @default.
- W2896984162 type Work @default.
- W2896984162 sameAs 2896984162 @default.
- W2896984162 citedByCount "29" @default.
- W2896984162 countsByYear W28969841622019 @default.
- W2896984162 countsByYear W28969841622020 @default.
- W2896984162 countsByYear W28969841622021 @default.
- W2896984162 countsByYear W28969841622022 @default.