Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896989282> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2896989282 abstract "This dissertation is concerned with the autonomous learning of behavioral models for sequential decision-making. It addresses both the theoretical aspects of behavioral modeling — like the learning of appropriate task representations — and the practical difficulties regarding algorithmic implementation. The first half of the dissertation deals with the problem of learning from demonstration, which consists in generalizing the behavior of an expert demonstrator based on observation data. Two alternative modeling paradigms are discussed. First, a nonparametric inference framework is developed to capture the behavior of the expert at the policy level. A key challenge in the design of the framework is the objective of making minimal assumptions about the observed behavior type while dealing with a potentially infinite number of system states. Due to the automatic adaptation of the model order to the complexity of the shown behavior, the proposed approach is able to pick up stochastic expert policies of arbitrary structure. Second, a nonparametric inverse reinforcement learning framework based on subgoal modeling is proposed, which allows to efficiently reconstruct the expert behavior at the intentional level. Other than most existing approaches, the proposed methodology naturally handles periodic tasks and situations where the intentions of the expert change over time. By adaptively decomposing the decision-making problem into a series of task-related subproblems, both inference frameworks are suitable for learning compact encodings of the expert behavior. For performance evaluation, the models are compared with existing frameworks on synthetic benchmark scenarios and real-world data recorded on a KUKA lightweight robotic arm. In the second half of the work, the focus shifts to multi-agent modeling, with the aim of analyzing the decision-making process in large-scale homogeneous agent networks. To fill the gap of decentralized system models with explicit agent homogeneity, a new class of agent systems is introduced. For this system class, the problem of inverse reinforcement learning is discussed and a meta learning algorithm is devised that makes explicit use of the system symmetries. As part of the algorithm, a heterogeneous reinforcement learning scheme is proposed for optimizing the collective behavior of the system based on the local state observations made at the agent level. Finally, to scale the simulation of the network to large agent numbers, a continuum version of the model is derived. After discussing the system components and associated optimality criteria, numerical examples of collective tasks are given that demonstrate the capabilities of the continuum approach and show its advantages over large-scale agent-based modeling." @default.
- W2896989282 created "2018-10-26" @default.
- W2896989282 creator A5044532188 @default.
- W2896989282 date "2018-01-01" @default.
- W2896989282 modified "2023-09-27" @default.
- W2896989282 title "Learning Models of Behavior From Demonstration and Through Interaction" @default.
- W2896989282 hasPublicationYear "2018" @default.
- W2896989282 type Work @default.
- W2896989282 sameAs 2896989282 @default.
- W2896989282 citedByCount "0" @default.
- W2896989282 crossrefType "dissertation" @default.
- W2896989282 hasAuthorship W2896989282A5044532188 @default.
- W2896989282 hasConcept C102366305 @default.
- W2896989282 hasConcept C105795698 @default.
- W2896989282 hasConcept C119857082 @default.
- W2896989282 hasConcept C120665830 @default.
- W2896989282 hasConcept C121332964 @default.
- W2896989282 hasConcept C127413603 @default.
- W2896989282 hasConcept C13280743 @default.
- W2896989282 hasConcept C139807058 @default.
- W2896989282 hasConcept C154945302 @default.
- W2896989282 hasConcept C185798385 @default.
- W2896989282 hasConcept C201995342 @default.
- W2896989282 hasConcept C205649164 @default.
- W2896989282 hasConcept C26517878 @default.
- W2896989282 hasConcept C2776214188 @default.
- W2896989282 hasConcept C2780451532 @default.
- W2896989282 hasConcept C33923547 @default.
- W2896989282 hasConcept C38652104 @default.
- W2896989282 hasConcept C41008148 @default.
- W2896989282 hasConcept C58328972 @default.
- W2896989282 hasConcept C97541855 @default.
- W2896989282 hasConceptScore W2896989282C102366305 @default.
- W2896989282 hasConceptScore W2896989282C105795698 @default.
- W2896989282 hasConceptScore W2896989282C119857082 @default.
- W2896989282 hasConceptScore W2896989282C120665830 @default.
- W2896989282 hasConceptScore W2896989282C121332964 @default.
- W2896989282 hasConceptScore W2896989282C127413603 @default.
- W2896989282 hasConceptScore W2896989282C13280743 @default.
- W2896989282 hasConceptScore W2896989282C139807058 @default.
- W2896989282 hasConceptScore W2896989282C154945302 @default.
- W2896989282 hasConceptScore W2896989282C185798385 @default.
- W2896989282 hasConceptScore W2896989282C201995342 @default.
- W2896989282 hasConceptScore W2896989282C205649164 @default.
- W2896989282 hasConceptScore W2896989282C26517878 @default.
- W2896989282 hasConceptScore W2896989282C2776214188 @default.
- W2896989282 hasConceptScore W2896989282C2780451532 @default.
- W2896989282 hasConceptScore W2896989282C33923547 @default.
- W2896989282 hasConceptScore W2896989282C38652104 @default.
- W2896989282 hasConceptScore W2896989282C41008148 @default.
- W2896989282 hasConceptScore W2896989282C58328972 @default.
- W2896989282 hasConceptScore W2896989282C97541855 @default.
- W2896989282 hasLocation W28969892821 @default.
- W2896989282 hasOpenAccess W2896989282 @default.
- W2896989282 hasPrimaryLocation W28969892821 @default.
- W2896989282 hasRelatedWork W125070426 @default.
- W2896989282 hasRelatedWork W1502259354 @default.
- W2896989282 hasRelatedWork W1580256222 @default.
- W2896989282 hasRelatedWork W2046117742 @default.
- W2896989282 hasRelatedWork W2133727715 @default.
- W2896989282 hasRelatedWork W2138964949 @default.
- W2896989282 hasRelatedWork W2156801658 @default.
- W2896989282 hasRelatedWork W2162667120 @default.
- W2896989282 hasRelatedWork W2188700063 @default.
- W2896989282 hasRelatedWork W2557500963 @default.
- W2896989282 hasRelatedWork W2570016412 @default.
- W2896989282 hasRelatedWork W2571696871 @default.
- W2896989282 hasRelatedWork W2767825478 @default.
- W2896989282 hasRelatedWork W2910364893 @default.
- W2896989282 hasRelatedWork W3013720227 @default.
- W2896989282 hasRelatedWork W3091229162 @default.
- W2896989282 hasRelatedWork W31377030 @default.
- W2896989282 hasRelatedWork W3196519516 @default.
- W2896989282 hasRelatedWork W42262393 @default.
- W2896989282 hasRelatedWork W1678556513 @default.
- W2896989282 isParatext "false" @default.
- W2896989282 isRetracted "false" @default.
- W2896989282 magId "2896989282" @default.
- W2896989282 workType "dissertation" @default.