Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896989605> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2896989605 abstract "Goal: Textile-based stretch sensors are a novel and innovative alternative to traditional wearable sensors with applications in many different fields including robotics, virtual reality and healthcare. However, due to their non-linear properties it can be challenging to obtain accurate information. The goal of this study was to investigate if machine learning can be applied to obtain more accurate measurements. Methods: In a tensile test using a linear stage setup, data were collected from two commercial available stretch sensors (Adafruit and Image SI) and one self-fabricated sensor (Menrva research group at Simon Fraser University, Canada). For each sensor, one hour of consecutive stretches in both a trapezoidal and sinusoidal input pattern were collected. We identified a set of features, trained three commonly used machine learning algorithms, and compared their performance in estimating the amount of stretch. To demonstrate the feasibility of our approach in real life, we tested our setup in two human applications. First, we attached a stretch sensor to the human chest to estimate the expansion of the rib cage during breathing. Second, we evaluated the performance in estimating the ankle position with a sensor attached to the foot. Results: In the tensile test, Support Vector Regression performed best with an average accuracy $(mathbf{R}^{2})$ of 0.98 (0.01) and mean absolute error of 0.18 (0.06) mm across all input patterns and sensors. The accuracy was significantly $(mathbf{p} < pmb{0.01})$. higher than the performance of a traditional linear model. An accuracy $(mathbf{R}^{2})$ of 0.91 (0.04) with a mean absolute error of 3.08 (0.38) mm has been achieved in estimating the expansion of the chest. Similarly, an accuracy (R2) of 0.90 (0.04) with a mean absolute error of 2.90 (0.61) degree has been achieved in estimating the ankle position. Conclusion: We demonstrate that machine learning can be used to obtain accurate stretch information from textile-based stretch sensors." @default.
- W2896989605 created "2018-10-26" @default.
- W2896989605 creator A5000064754 @default.
- W2896989605 creator A5021515928 @default.
- W2896989605 creator A5081755934 @default.
- W2896989605 date "2018-08-01" @default.
- W2896989605 modified "2023-09-26" @default.
- W2896989605 title "Quantification of Textile-Based Stretch Sensors Using Machine Learning: An Exploratory Study" @default.
- W2896989605 cites W1514247245 @default.
- W2896989605 cites W1537337007 @default.
- W2896989605 cites W1968492822 @default.
- W2896989605 cites W1999959880 @default.
- W2896989605 cites W2021995161 @default.
- W2896989605 cites W2041213259 @default.
- W2896989605 cites W2049233632 @default.
- W2896989605 cites W2057646279 @default.
- W2896989605 cites W2077125908 @default.
- W2896989605 cites W2096684483 @default.
- W2896989605 cites W2099517908 @default.
- W2896989605 cites W2106822551 @default.
- W2896989605 cites W2131496831 @default.
- W2896989605 cites W2133838039 @default.
- W2896989605 cites W2137226992 @default.
- W2896989605 cites W2137543837 @default.
- W2896989605 cites W2139811958 @default.
- W2896989605 cites W2149723649 @default.
- W2896989605 cites W2151368421 @default.
- W2896989605 cites W2501111367 @default.
- W2896989605 cites W2534521461 @default.
- W2896989605 cites W2536127515 @default.
- W2896989605 cites W2563950242 @default.
- W2896989605 cites W2593801033 @default.
- W2896989605 cites W273955616 @default.
- W2896989605 cites W2749381439 @default.
- W2896989605 doi "https://doi.org/10.1109/biorob.2018.8487215" @default.
- W2896989605 hasPublicationYear "2018" @default.
- W2896989605 type Work @default.
- W2896989605 sameAs 2896989605 @default.
- W2896989605 citedByCount "3" @default.
- W2896989605 countsByYear W28969896052019 @default.
- W2896989605 countsByYear W28969896052021 @default.
- W2896989605 countsByYear W28969896052022 @default.
- W2896989605 crossrefType "proceedings-article" @default.
- W2896989605 hasAuthorship W2896989605A5000064754 @default.
- W2896989605 hasAuthorship W2896989605A5021515928 @default.
- W2896989605 hasAuthorship W2896989605A5081755934 @default.
- W2896989605 hasConcept C105795698 @default.
- W2896989605 hasConcept C119857082 @default.
- W2896989605 hasConcept C12267149 @default.
- W2896989605 hasConcept C139945424 @default.
- W2896989605 hasConcept C149635348 @default.
- W2896989605 hasConcept C150594956 @default.
- W2896989605 hasConcept C153180895 @default.
- W2896989605 hasConcept C154945302 @default.
- W2896989605 hasConcept C159985019 @default.
- W2896989605 hasConcept C164767435 @default.
- W2896989605 hasConcept C188154048 @default.
- W2896989605 hasConcept C192562407 @default.
- W2896989605 hasConcept C31972630 @default.
- W2896989605 hasConcept C33923547 @default.
- W2896989605 hasConcept C34413123 @default.
- W2896989605 hasConcept C41008148 @default.
- W2896989605 hasConcept C44154836 @default.
- W2896989605 hasConcept C90509273 @default.
- W2896989605 hasConceptScore W2896989605C105795698 @default.
- W2896989605 hasConceptScore W2896989605C119857082 @default.
- W2896989605 hasConceptScore W2896989605C12267149 @default.
- W2896989605 hasConceptScore W2896989605C139945424 @default.
- W2896989605 hasConceptScore W2896989605C149635348 @default.
- W2896989605 hasConceptScore W2896989605C150594956 @default.
- W2896989605 hasConceptScore W2896989605C153180895 @default.
- W2896989605 hasConceptScore W2896989605C154945302 @default.
- W2896989605 hasConceptScore W2896989605C159985019 @default.
- W2896989605 hasConceptScore W2896989605C164767435 @default.
- W2896989605 hasConceptScore W2896989605C188154048 @default.
- W2896989605 hasConceptScore W2896989605C192562407 @default.
- W2896989605 hasConceptScore W2896989605C31972630 @default.
- W2896989605 hasConceptScore W2896989605C33923547 @default.
- W2896989605 hasConceptScore W2896989605C34413123 @default.
- W2896989605 hasConceptScore W2896989605C41008148 @default.
- W2896989605 hasConceptScore W2896989605C44154836 @default.
- W2896989605 hasConceptScore W2896989605C90509273 @default.
- W2896989605 hasLocation W28969896051 @default.
- W2896989605 hasOpenAccess W2896989605 @default.
- W2896989605 hasPrimaryLocation W28969896051 @default.
- W2896989605 hasRelatedWork W2077193964 @default.
- W2896989605 hasRelatedWork W2099369243 @default.
- W2896989605 hasRelatedWork W2149757685 @default.
- W2896989605 hasRelatedWork W2995227436 @default.
- W2896989605 hasRelatedWork W3005896249 @default.
- W2896989605 hasRelatedWork W3166508367 @default.
- W2896989605 hasRelatedWork W3172787969 @default.
- W2896989605 hasRelatedWork W3174697547 @default.
- W2896989605 hasRelatedWork W4205321145 @default.
- W2896989605 hasRelatedWork W4205958290 @default.
- W2896989605 isParatext "false" @default.
- W2896989605 isRetracted "false" @default.
- W2896989605 magId "2896989605" @default.
- W2896989605 workType "article" @default.