Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896998210> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2896998210 endingPage "896" @default.
- W2896998210 startingPage "876" @default.
- W2896998210 abstract "Abstract Two pattern recognition technologies in the field of machine learning, clustering and classification, have been applied in many domains. Density-based clustering is an essential clustering algorithm. The best known density-based clustering method is Density-Based Spatial Clustering of Applications with Noise (DBSCAN), which can find arbitrary shaped clusters in datasets. DBSCAN has three drawbacks: firstly, the parameters for DBSCAN are hard to set; secondly, the number of clusters cannot be controlled by the users; and thirdly, DBSCAN cannot directly be used as a classifier. In this paper a novel Particle swarm Optimized Density-based Clustering and Classification (PODCC) is proposed, designed to offset the drawbacks of DBSCAN. Particle Swarm Optimization (PSO), a widely used Evolutionary and Swarm Algorithm (ESA), has been applied in optimization problems in different research domains including data analytics. In PODCC, a variant of PSO, SPSO-2011, is used to search the parameter space so as to identify the best parameters for density-based clustering and classification. PODCC can function in terms of both Supervised and Unsupervised Learnings by applying the appropriate fitness functions proposed in this paper. With the proposed fitness function, users can set the number of clusters as input for PODCC. The proposed method was evaluated by testing ten synthetic datasets and ten benchmarking datasets selected from various open sources. The experimental results indicate that the proposed PODCC can perform better than some established methods, especially with respect to imbalanced datasets." @default.
- W2896998210 created "2018-10-26" @default.
- W2896998210 creator A5028029429 @default.
- W2896998210 creator A5056440787 @default.
- W2896998210 creator A5073606016 @default.
- W2896998210 date "2019-02-01" @default.
- W2896998210 modified "2023-10-03" @default.
- W2896998210 title "Particle swarm Optimized Density-based Clustering and Classification: Supervised and unsupervised learning approaches" @default.
- W2896998210 cites W1595159159 @default.
- W2896998210 cites W1971022913 @default.
- W2896998210 cites W1976990135 @default.
- W2896998210 cites W1981566656 @default.
- W2896998210 cites W1984779822 @default.
- W2896998210 cites W1987971958 @default.
- W2896998210 cites W1992181154 @default.
- W2896998210 cites W2020176002 @default.
- W2896998210 cites W2024233944 @default.
- W2896998210 cites W2051224630 @default.
- W2896998210 cites W2061034685 @default.
- W2896998210 cites W2075647286 @default.
- W2896998210 cites W2086197761 @default.
- W2896998210 cites W2107941094 @default.
- W2896998210 cites W2117190680 @default.
- W2896998210 cites W2171149164 @default.
- W2896998210 cites W2302947639 @default.
- W2896998210 cites W2499509962 @default.
- W2896998210 cites W2579725890 @default.
- W2896998210 cites W2589805776 @default.
- W2896998210 cites W2779455732 @default.
- W2896998210 cites W2786960723 @default.
- W2896998210 cites W4239510810 @default.
- W2896998210 doi "https://doi.org/10.1016/j.swevo.2018.09.008" @default.
- W2896998210 hasPublicationYear "2019" @default.
- W2896998210 type Work @default.
- W2896998210 sameAs 2896998210 @default.
- W2896998210 citedByCount "26" @default.
- W2896998210 countsByYear W28969982102019 @default.
- W2896998210 countsByYear W28969982102020 @default.
- W2896998210 countsByYear W28969982102021 @default.
- W2896998210 countsByYear W28969982102022 @default.
- W2896998210 countsByYear W28969982102023 @default.
- W2896998210 crossrefType "journal-article" @default.
- W2896998210 hasAuthorship W2896998210A5028029429 @default.
- W2896998210 hasAuthorship W2896998210A5056440787 @default.
- W2896998210 hasAuthorship W2896998210A5073606016 @default.
- W2896998210 hasBestOaLocation W28969982101 @default.
- W2896998210 hasConcept C119857082 @default.
- W2896998210 hasConcept C136389625 @default.
- W2896998210 hasConcept C153180895 @default.
- W2896998210 hasConcept C154945302 @default.
- W2896998210 hasConcept C41008148 @default.
- W2896998210 hasConcept C50644808 @default.
- W2896998210 hasConcept C73555534 @default.
- W2896998210 hasConcept C8038995 @default.
- W2896998210 hasConcept C85617194 @default.
- W2896998210 hasConceptScore W2896998210C119857082 @default.
- W2896998210 hasConceptScore W2896998210C136389625 @default.
- W2896998210 hasConceptScore W2896998210C153180895 @default.
- W2896998210 hasConceptScore W2896998210C154945302 @default.
- W2896998210 hasConceptScore W2896998210C41008148 @default.
- W2896998210 hasConceptScore W2896998210C50644808 @default.
- W2896998210 hasConceptScore W2896998210C73555534 @default.
- W2896998210 hasConceptScore W2896998210C8038995 @default.
- W2896998210 hasConceptScore W2896998210C85617194 @default.
- W2896998210 hasFunder F4320321001 @default.
- W2896998210 hasFunder F4320322769 @default.
- W2896998210 hasLocation W28969982101 @default.
- W2896998210 hasOpenAccess W2896998210 @default.
- W2896998210 hasPrimaryLocation W28969982101 @default.
- W2896998210 hasRelatedWork W2525032316 @default.
- W2896998210 hasRelatedWork W3022038857 @default.
- W2896998210 hasRelatedWork W3046775127 @default.
- W2896998210 hasRelatedWork W3094076422 @default.
- W2896998210 hasRelatedWork W3095538999 @default.
- W2896998210 hasRelatedWork W3158877728 @default.
- W2896998210 hasRelatedWork W3186093657 @default.
- W2896998210 hasRelatedWork W3200361725 @default.
- W2896998210 hasRelatedWork W3210156800 @default.
- W2896998210 hasRelatedWork W4220882831 @default.
- W2896998210 hasVolume "44" @default.
- W2896998210 isParatext "false" @default.
- W2896998210 isRetracted "false" @default.
- W2896998210 magId "2896998210" @default.
- W2896998210 workType "article" @default.