Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897006304> ?p ?o ?g. }
- W2897006304 endingPage "217" @default.
- W2897006304 startingPage "205" @default.
- W2897006304 abstract "Despite the potential for better understanding functional neuroanatomy, the complex relationship between neuroimaging measures of brain structure and function has confounded integrative, multimodal analyses of brain connectivity. This is particularly true for task-related effective connectivity, which describes the causal influences between neuronal populations. Here, we assess whether measures of structural connectivity may usefully inform estimates of effective connectivity in larger scale brain networks. To this end, we introduce an integrative approach, capitalising on two recent statistical advances: Parametric Empirical Bayes, which provides group-level estimates of effective connectivity, and Bayesian model reduction, which enables rapid comparison of competing models. Crucially, we show that structural priors derived from high angular resolution diffusion imaging on a dynamic causal model of a 12-region network—based on functional MRI data from the same subjects—substantially improve model evidence (posterior probability 1.00). This provides definitive evidence that structural and effective connectivity depend upon each other in mediating distributed, large-scale interactions in the brain. Furthermore, this work offers novel perspectives for understanding normal brain architecture and its disintegration in clinical conditions." @default.
- W2897006304 created "2018-10-26" @default.
- W2897006304 creator A5007458372 @default.
- W2897006304 creator A5023594320 @default.
- W2897006304 creator A5049183256 @default.
- W2897006304 creator A5077026598 @default.
- W2897006304 creator A5080502793 @default.
- W2897006304 creator A5086852785 @default.
- W2897006304 date "2018-10-09" @default.
- W2897006304 modified "2023-10-15" @default.
- W2897006304 title "Linking structural and effective brain connectivity: structurally informed Parametric Empirical Bayes (si-PEB)" @default.
- W2897006304 cites W1861492143 @default.
- W2897006304 cites W1912252742 @default.
- W2897006304 cites W1963810633 @default.
- W2897006304 cites W1964290461 @default.
- W2897006304 cites W1968020652 @default.
- W2897006304 cites W1974105735 @default.
- W2897006304 cites W1977630746 @default.
- W2897006304 cites W1985220467 @default.
- W2897006304 cites W1985316884 @default.
- W2897006304 cites W1994341528 @default.
- W2897006304 cites W1998297113 @default.
- W2897006304 cites W2000133863 @default.
- W2897006304 cites W2002807356 @default.
- W2897006304 cites W2006312249 @default.
- W2897006304 cites W2015822010 @default.
- W2897006304 cites W2024729467 @default.
- W2897006304 cites W2034252184 @default.
- W2897006304 cites W2037775672 @default.
- W2897006304 cites W2038574879 @default.
- W2897006304 cites W2040752993 @default.
- W2897006304 cites W2043932413 @default.
- W2897006304 cites W2051837317 @default.
- W2897006304 cites W2052570168 @default.
- W2897006304 cites W2052644075 @default.
- W2897006304 cites W2053610521 @default.
- W2897006304 cites W2056334380 @default.
- W2897006304 cites W2058046532 @default.
- W2897006304 cites W2067456724 @default.
- W2897006304 cites W2071881327 @default.
- W2897006304 cites W2073025349 @default.
- W2897006304 cites W2078864646 @default.
- W2897006304 cites W2079095593 @default.
- W2897006304 cites W2084503623 @default.
- W2897006304 cites W2087658007 @default.
- W2897006304 cites W2090668679 @default.
- W2897006304 cites W2091910928 @default.
- W2897006304 cites W2097524044 @default.
- W2897006304 cites W2102600873 @default.
- W2897006304 cites W2103095005 @default.
- W2897006304 cites W2106396500 @default.
- W2897006304 cites W2106414999 @default.
- W2897006304 cites W2107280169 @default.
- W2897006304 cites W2113257799 @default.
- W2897006304 cites W2114231389 @default.
- W2897006304 cites W2116136260 @default.
- W2897006304 cites W2117663940 @default.
- W2897006304 cites W2117925523 @default.
- W2897006304 cites W2123663192 @default.
- W2897006304 cites W2124757386 @default.
- W2897006304 cites W2131181615 @default.
- W2897006304 cites W2139037554 @default.
- W2897006304 cites W2140952948 @default.
- W2897006304 cites W2145064079 @default.
- W2897006304 cites W2145749918 @default.
- W2897006304 cites W2149116050 @default.
- W2897006304 cites W2151321983 @default.
- W2897006304 cites W2155635793 @default.
- W2897006304 cites W2156295356 @default.
- W2897006304 cites W2171496853 @default.
- W2897006304 cites W2171945929 @default.
- W2897006304 cites W2175340201 @default.
- W2897006304 cites W2177331807 @default.
- W2897006304 cites W2196267284 @default.
- W2897006304 cites W2202974381 @default.
- W2897006304 cites W2279210000 @default.
- W2897006304 cites W2546647959 @default.
- W2897006304 cites W2588914603 @default.
- W2897006304 cites W2594073024 @default.
- W2897006304 cites W2600094224 @default.
- W2897006304 cites W4232020351 @default.
- W2897006304 cites W4233994114 @default.
- W2897006304 cites W4235770099 @default.
- W2897006304 doi "https://doi.org/10.1007/s00429-018-1760-8" @default.
- W2897006304 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6373362" @default.
- W2897006304 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30302538" @default.
- W2897006304 hasPublicationYear "2018" @default.
- W2897006304 type Work @default.
- W2897006304 sameAs 2897006304 @default.
- W2897006304 citedByCount "36" @default.
- W2897006304 countsByYear W28970063042018 @default.
- W2897006304 countsByYear W28970063042019 @default.
- W2897006304 countsByYear W28970063042020 @default.
- W2897006304 countsByYear W28970063042021 @default.
- W2897006304 countsByYear W28970063042022 @default.
- W2897006304 countsByYear W28970063042023 @default.
- W2897006304 crossrefType "journal-article" @default.
- W2897006304 hasAuthorship W2897006304A5007458372 @default.