Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897024124> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2897024124 endingPage "786" @default.
- W2897024124 startingPage "776" @default.
- W2897024124 abstract "Abstract Multi-view clustering and multi-task clustering attract much attention in recent years. With the development of data mining, a new learning scenario containing the properties of multi-task and multi-view together appears, which called multi-task multi-view learning. Existing multi-task multi-view learning usually applies for classification and considers that all tasks share the same class label sets. Nevertheless, there is not much information about label sets in real world applications and it is difficult for all learning tasks to contain the same label sets. Hence, in order to overcome the two limitations, we propose a multi-task multi-view clustering algorithm in heterogeneous situations based on Locally Linear Embedding (LLE) and Laplacian Eigenmaps (LE) methods (L3E-M2VC). It maps the samples of multiple views from each task to a common view space firstly, then transforms the samples to a discriminative task space secondly, and finally exploits K-Means for clustering. Experiments on several multi-task multi-view data sets are evaluated by RI and CA and the results show that our L3E-M2VC outperforms the other 11 methods, including single-task single-view, multi-view, multi-task, multi-view multi-task algorithms and the varieties of our method." @default.
- W2897024124 created "2018-10-26" @default.
- W2897024124 creator A5028957931 @default.
- W2897024124 creator A5042597849 @default.
- W2897024124 creator A5068951317 @default.
- W2897024124 creator A5070559820 @default.
- W2897024124 date "2019-01-01" @default.
- W2897024124 modified "2023-10-17" @default.
- W2897024124 title "A multitask multiview clustering algorithm in heterogeneous situations based on LLE and LE" @default.
- W2897024124 cites W2010376469 @default.
- W2897024124 cites W2053186076 @default.
- W2897024124 cites W2057923756 @default.
- W2897024124 cites W2125070513 @default.
- W2897024124 cites W2127615881 @default.
- W2897024124 cites W2194813874 @default.
- W2897024124 cites W2198858367 @default.
- W2897024124 cites W2322020277 @default.
- W2897024124 cites W2331050942 @default.
- W2897024124 cites W2508122452 @default.
- W2897024124 cites W2515230771 @default.
- W2897024124 cites W2587115404 @default.
- W2897024124 cites W2605639220 @default.
- W2897024124 cites W2735647642 @default.
- W2897024124 cites W2758611985 @default.
- W2897024124 cites W2765771013 @default.
- W2897024124 cites W2790896944 @default.
- W2897024124 cites W2803104255 @default.
- W2897024124 cites W2808465901 @default.
- W2897024124 doi "https://doi.org/10.1016/j.knosys.2018.10.001" @default.
- W2897024124 hasPublicationYear "2019" @default.
- W2897024124 type Work @default.
- W2897024124 sameAs 2897024124 @default.
- W2897024124 citedByCount "104" @default.
- W2897024124 countsByYear W28970241242018 @default.
- W2897024124 countsByYear W28970241242019 @default.
- W2897024124 countsByYear W28970241242020 @default.
- W2897024124 countsByYear W28970241242021 @default.
- W2897024124 countsByYear W28970241242022 @default.
- W2897024124 countsByYear W28970241242023 @default.
- W2897024124 crossrefType "journal-article" @default.
- W2897024124 hasAuthorship W2897024124A5028957931 @default.
- W2897024124 hasAuthorship W2897024124A5042597849 @default.
- W2897024124 hasAuthorship W2897024124A5068951317 @default.
- W2897024124 hasAuthorship W2897024124A5070559820 @default.
- W2897024124 hasConcept C11413529 @default.
- W2897024124 hasConcept C124101348 @default.
- W2897024124 hasConcept C153180895 @default.
- W2897024124 hasConcept C154945302 @default.
- W2897024124 hasConcept C31972630 @default.
- W2897024124 hasConcept C41008148 @default.
- W2897024124 hasConcept C73555534 @default.
- W2897024124 hasConceptScore W2897024124C11413529 @default.
- W2897024124 hasConceptScore W2897024124C124101348 @default.
- W2897024124 hasConceptScore W2897024124C153180895 @default.
- W2897024124 hasConceptScore W2897024124C154945302 @default.
- W2897024124 hasConceptScore W2897024124C31972630 @default.
- W2897024124 hasConceptScore W2897024124C41008148 @default.
- W2897024124 hasConceptScore W2897024124C73555534 @default.
- W2897024124 hasFunder F4320321001 @default.
- W2897024124 hasLocation W28970241241 @default.
- W2897024124 hasOpenAccess W2897024124 @default.
- W2897024124 hasPrimaryLocation W28970241241 @default.
- W2897024124 hasRelatedWork W1891287906 @default.
- W2897024124 hasRelatedWork W1969923398 @default.
- W2897024124 hasRelatedWork W2036807459 @default.
- W2897024124 hasRelatedWork W2058170566 @default.
- W2897024124 hasRelatedWork W2170022336 @default.
- W2897024124 hasRelatedWork W2229312674 @default.
- W2897024124 hasRelatedWork W258625772 @default.
- W2897024124 hasRelatedWork W2755342338 @default.
- W2897024124 hasRelatedWork W2772917594 @default.
- W2897024124 hasRelatedWork W3116076068 @default.
- W2897024124 hasVolume "163" @default.
- W2897024124 isParatext "false" @default.
- W2897024124 isRetracted "false" @default.
- W2897024124 magId "2897024124" @default.
- W2897024124 workType "article" @default.