Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897028106> ?p ?o ?g. }
- W2897028106 endingPage "933" @default.
- W2897028106 startingPage "911" @default.
- W2897028106 abstract "Multiple Quantitative Structure-Activity Relationship (QSAR) analysis is widely used in drug discovery for lead identification. Human Immunodeficiency Virus (HIV) protease is one of the key targets for the treatment of Acquired Immunodeficiency Syndrome (AIDS). One of the major challenges for the design of HIV-1 protease inhibitors (HIV PRIs) is to increase the inhibitory activities against the enzyme to a level where the problem associated to drug resistance may be considerably delayed. Herein, chemometric analyses were performed with 346 structurally diverse HIV PRIs with experimental bioactivities against a sub-type B mutant to develop highly predictable QSAR models and also to identify the effective structural determinants for higher affinity against HIV PR. The QSAR models were developed using OCHEM-based machine learning tools (ASNN, FSMLR, KNN, RF, MANN and XGBoost), with descriptors calculated by eight different software packages. Simultaneously, a Monte Carlo optimization-based QSAR modelling was performed using SMILES and graph-based descriptors to understand fragment and topochemical contributions. To validate the actual predictability of all these models, an additional set of 104 compounds (also with known experimental activities) with slightly different chemical space were employed. This ligand-based study serves as a crucial benchmark for further development of the HIV protease inhibitors with improved activities." @default.
- W2897028106 created "2018-10-26" @default.
- W2897028106 creator A5031384822 @default.
- W2897028106 date "2018-10-18" @default.
- W2897028106 modified "2023-10-16" @default.
- W2897028106 title "Finding the structural requirements of diverse HIV-1 protease inhibitors using multiple QSAR modelling for lead identification" @default.
- W2897028106 cites W1494023094 @default.
- W2897028106 cites W1522792667 @default.
- W2897028106 cites W1778508515 @default.
- W2897028106 cites W1908851533 @default.
- W2897028106 cites W1969085205 @default.
- W2897028106 cites W1972266664 @default.
- W2897028106 cites W1974488819 @default.
- W2897028106 cites W1974778190 @default.
- W2897028106 cites W1977249481 @default.
- W2897028106 cites W1980315121 @default.
- W2897028106 cites W1990399577 @default.
- W2897028106 cites W1990780800 @default.
- W2897028106 cites W1992651835 @default.
- W2897028106 cites W1996325896 @default.
- W2897028106 cites W1997355076 @default.
- W2897028106 cites W2004848651 @default.
- W2897028106 cites W2006656903 @default.
- W2897028106 cites W2012507187 @default.
- W2897028106 cites W2012527936 @default.
- W2897028106 cites W2015809678 @default.
- W2897028106 cites W2017783003 @default.
- W2897028106 cites W2020578516 @default.
- W2897028106 cites W2023070411 @default.
- W2897028106 cites W2023819168 @default.
- W2897028106 cites W2028030297 @default.
- W2897028106 cites W2033757486 @default.
- W2897028106 cites W2033855583 @default.
- W2897028106 cites W2035139249 @default.
- W2897028106 cites W2038099508 @default.
- W2897028106 cites W2039862437 @default.
- W2897028106 cites W2040086703 @default.
- W2897028106 cites W2041635939 @default.
- W2897028106 cites W2042278642 @default.
- W2897028106 cites W2055776987 @default.
- W2897028106 cites W2056704605 @default.
- W2897028106 cites W2068950612 @default.
- W2897028106 cites W2076018148 @default.
- W2897028106 cites W2087661061 @default.
- W2897028106 cites W2089578131 @default.
- W2897028106 cites W2091014829 @default.
- W2897028106 cites W2091926467 @default.
- W2897028106 cites W2096417900 @default.
- W2897028106 cites W2100462612 @default.
- W2897028106 cites W2118080283 @default.
- W2897028106 cites W2131515605 @default.
- W2897028106 cites W2133230806 @default.
- W2897028106 cites W2136901708 @default.
- W2897028106 cites W2139198463 @default.
- W2897028106 cites W2153557524 @default.
- W2897028106 cites W2157851318 @default.
- W2897028106 cites W2171830166 @default.
- W2897028106 cites W2172423972 @default.
- W2897028106 cites W2174346530 @default.
- W2897028106 cites W2174812084 @default.
- W2897028106 cites W2176311929 @default.
- W2897028106 cites W2177403328 @default.
- W2897028106 cites W2261189595 @default.
- W2897028106 cites W2276417411 @default.
- W2897028106 cites W2280795966 @default.
- W2897028106 cites W2323909011 @default.
- W2897028106 cites W2345988829 @default.
- W2897028106 cites W240501384 @default.
- W2897028106 cites W2611059173 @default.
- W2897028106 cites W2760085125 @default.
- W2897028106 cites W2949730222 @default.
- W2897028106 cites W2950987658 @default.
- W2897028106 cites W3102476541 @default.
- W2897028106 doi "https://doi.org/10.1080/1062936x.2018.1529702" @default.
- W2897028106 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30332922" @default.
- W2897028106 hasPublicationYear "2018" @default.
- W2897028106 type Work @default.
- W2897028106 sameAs 2897028106 @default.
- W2897028106 citedByCount "24" @default.
- W2897028106 countsByYear W28970281062019 @default.
- W2897028106 countsByYear W28970281062020 @default.
- W2897028106 countsByYear W28970281062021 @default.
- W2897028106 countsByYear W28970281062022 @default.
- W2897028106 countsByYear W28970281062023 @default.
- W2897028106 crossrefType "journal-article" @default.
- W2897028106 hasAuthorship W2897028106A5031384822 @default.
- W2897028106 hasConcept C116834253 @default.
- W2897028106 hasConcept C119857082 @default.
- W2897028106 hasConcept C154945302 @default.
- W2897028106 hasConcept C159047783 @default.
- W2897028106 hasConcept C164126121 @default.
- W2897028106 hasConcept C181199279 @default.
- W2897028106 hasConcept C185592680 @default.
- W2897028106 hasConcept C2776714187 @default.
- W2897028106 hasConcept C2777583353 @default.
- W2897028106 hasConcept C3013748606 @default.
- W2897028106 hasConcept C41008148 @default.
- W2897028106 hasConcept C55493867 @default.