Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897031886> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2897031886 abstract "The exponential growth of the data collected by telescopes have turned astronomy into a data-drive science. The detection of astronomical transient events, short-lived and bright phenomena such as the Supernovae, is currently a main science driver of many astronomical surveys. There is an opportunity for the application of machine learning methods for the automatic detection of astronomical transients.In this paper we focus on the unsupervised learning case to perform an exploratory analysis on a dataset of 1,250,000 astronomical transient candidates from the High Cadence Transient Survey. Our contributions can be summarized in 1) The application of Deep Variational Embedding for latent space clustering of a large database of transient candidates obtaining a clustering accuracy of 95.33% and 2) The proposal of an auto-regularization term as a novel approach to solve the common problem of over-regularization in variational autoencoders, we show that using this term not only improves the convergence of the algorithm but also increases the clustering accuracy and reconstruction quality." @default.
- W2897031886 created "2018-10-26" @default.
- W2897031886 creator A5010931397 @default.
- W2897031886 creator A5029181214 @default.
- W2897031886 creator A5052369244 @default.
- W2897031886 creator A5070726538 @default.
- W2897031886 date "2018-07-01" @default.
- W2897031886 modified "2023-09-27" @default.
- W2897031886 title "Clustering of Astronomical Transient Candidates Using Deep Variational Embedding" @default.
- W2897031886 cites W1533861849 @default.
- W2897031886 cites W1836465849 @default.
- W2897031886 cites W1959608418 @default.
- W2897031886 cites W2005876975 @default.
- W2897031886 cites W2047390355 @default.
- W2897031886 cites W2108501770 @default.
- W2897031886 cites W2139047213 @default.
- W2897031886 cites W2163605009 @default.
- W2897031886 cites W2269892441 @default.
- W2897031886 cites W2271840356 @default.
- W2897031886 cites W2431962807 @default.
- W2897031886 cites W2547875792 @default.
- W2897031886 cites W2560512785 @default.
- W2897031886 cites W2579277680 @default.
- W2897031886 cites W2581074048 @default.
- W2897031886 cites W2604977777 @default.
- W2897031886 cites W2622563070 @default.
- W2897031886 cites W2730106296 @default.
- W2897031886 cites W2963090522 @default.
- W2897031886 cites W3101213879 @default.
- W2897031886 cites W3103430166 @default.
- W2897031886 cites W3104062568 @default.
- W2897031886 doi "https://doi.org/10.1109/ijcnn.2018.8489358" @default.
- W2897031886 hasPublicationYear "2018" @default.
- W2897031886 type Work @default.
- W2897031886 sameAs 2897031886 @default.
- W2897031886 citedByCount "0" @default.
- W2897031886 crossrefType "proceedings-article" @default.
- W2897031886 hasAuthorship W2897031886A5010931397 @default.
- W2897031886 hasAuthorship W2897031886A5029181214 @default.
- W2897031886 hasAuthorship W2897031886A5052369244 @default.
- W2897031886 hasAuthorship W2897031886A5070726538 @default.
- W2897031886 hasConcept C111919701 @default.
- W2897031886 hasConcept C11413529 @default.
- W2897031886 hasConcept C124101348 @default.
- W2897031886 hasConcept C154945302 @default.
- W2897031886 hasConcept C2776135515 @default.
- W2897031886 hasConcept C2780799671 @default.
- W2897031886 hasConcept C41008148 @default.
- W2897031886 hasConcept C41608201 @default.
- W2897031886 hasConcept C73555534 @default.
- W2897031886 hasConceptScore W2897031886C111919701 @default.
- W2897031886 hasConceptScore W2897031886C11413529 @default.
- W2897031886 hasConceptScore W2897031886C124101348 @default.
- W2897031886 hasConceptScore W2897031886C154945302 @default.
- W2897031886 hasConceptScore W2897031886C2776135515 @default.
- W2897031886 hasConceptScore W2897031886C2780799671 @default.
- W2897031886 hasConceptScore W2897031886C41008148 @default.
- W2897031886 hasConceptScore W2897031886C41608201 @default.
- W2897031886 hasConceptScore W2897031886C73555534 @default.
- W2897031886 hasLocation W28970318861 @default.
- W2897031886 hasOpenAccess W2897031886 @default.
- W2897031886 hasPrimaryLocation W28970318861 @default.
- W2897031886 hasRelatedWork W171887329 @default.
- W2897031886 hasRelatedWork W1834608617 @default.
- W2897031886 hasRelatedWork W2107720767 @default.
- W2897031886 hasRelatedWork W2351202108 @default.
- W2897031886 hasRelatedWork W2552071709 @default.
- W2897031886 hasRelatedWork W2748952813 @default.
- W2897031886 hasRelatedWork W2903322478 @default.
- W2897031886 hasRelatedWork W2962738700 @default.
- W2897031886 hasRelatedWork W2981874448 @default.
- W2897031886 hasRelatedWork W3080167020 @default.
- W2897031886 isParatext "false" @default.
- W2897031886 isRetracted "false" @default.
- W2897031886 magId "2897031886" @default.
- W2897031886 workType "article" @default.