Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897032145> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2897032145 abstract "This paper presents a novel approach of classifying the type of glioma using convolutional neural network (CNN) on 2D MR images. Glioma, most common type of malignant brain tumor, and can be classified according to the type of glial cells affected. The types of gliomas are, namely, actrocytoma, oligodendroglioma and glioblastoma multiforme (GBM). Various image processing and pattern recognition techniques may be used for cancer identification and classification. Though in recent years deep learning has been proved to be efficient in computer aided diagnosis of diseases. Convolutional Neural Networks, a type of deep neural network which is generally used for classification of images, contains multiple sets of conv-pool layers for feature extraction, followed by fully-connected (FC) layers that make use of extracted features for classification." @default.
- W2897032145 created "2018-10-26" @default.
- W2897032145 creator A5026616687 @default.
- W2897032145 creator A5035942185 @default.
- W2897032145 creator A5040934090 @default.
- W2897032145 creator A5079108089 @default.
- W2897032145 date "2018-10-18" @default.
- W2897032145 modified "2023-09-26" @default.
- W2897032145 title "Identification of Glioma from MR Images Using Convolutional Neural Network" @default.
- W2897032145 cites W1849277567 @default.
- W2897032145 cites W2083927153 @default.
- W2897032145 cites W2112796928 @default.
- W2897032145 cites W2116531017 @default.
- W2897032145 cites W2116719896 @default.
- W2897032145 cites W2173635503 @default.
- W2897032145 cites W2301358467 @default.
- W2897032145 cites W240111077 @default.
- W2897032145 cites W2604990802 @default.
- W2897032145 cites W2751966700 @default.
- W2897032145 cites W2754132686 @default.
- W2897032145 cites W2763160469 @default.
- W2897032145 cites W2767046341 @default.
- W2897032145 cites W2783020986 @default.
- W2897032145 cites W2783188875 @default.
- W2897032145 cites W2788509011 @default.
- W2897032145 cites W2807032201 @default.
- W2897032145 doi "https://doi.org/10.1007/978-3-030-02686-8_44" @default.
- W2897032145 hasPublicationYear "2018" @default.
- W2897032145 type Work @default.
- W2897032145 sameAs 2897032145 @default.
- W2897032145 citedByCount "1" @default.
- W2897032145 countsByYear W28970321452021 @default.
- W2897032145 crossrefType "book-chapter" @default.
- W2897032145 hasAuthorship W2897032145A5026616687 @default.
- W2897032145 hasAuthorship W2897032145A5035942185 @default.
- W2897032145 hasAuthorship W2897032145A5040934090 @default.
- W2897032145 hasAuthorship W2897032145A5079108089 @default.
- W2897032145 hasConcept C108583219 @default.
- W2897032145 hasConcept C115961682 @default.
- W2897032145 hasConcept C116834253 @default.
- W2897032145 hasConcept C138885662 @default.
- W2897032145 hasConcept C153180895 @default.
- W2897032145 hasConcept C154945302 @default.
- W2897032145 hasConcept C2776194525 @default.
- W2897032145 hasConcept C2776401178 @default.
- W2897032145 hasConcept C2777931997 @default.
- W2897032145 hasConcept C2778227246 @default.
- W2897032145 hasConcept C2778880634 @default.
- W2897032145 hasConcept C41008148 @default.
- W2897032145 hasConcept C41895202 @default.
- W2897032145 hasConcept C502942594 @default.
- W2897032145 hasConcept C50644808 @default.
- W2897032145 hasConcept C52622490 @default.
- W2897032145 hasConcept C59822182 @default.
- W2897032145 hasConcept C71924100 @default.
- W2897032145 hasConcept C75294576 @default.
- W2897032145 hasConcept C81363708 @default.
- W2897032145 hasConcept C86803240 @default.
- W2897032145 hasConceptScore W2897032145C108583219 @default.
- W2897032145 hasConceptScore W2897032145C115961682 @default.
- W2897032145 hasConceptScore W2897032145C116834253 @default.
- W2897032145 hasConceptScore W2897032145C138885662 @default.
- W2897032145 hasConceptScore W2897032145C153180895 @default.
- W2897032145 hasConceptScore W2897032145C154945302 @default.
- W2897032145 hasConceptScore W2897032145C2776194525 @default.
- W2897032145 hasConceptScore W2897032145C2776401178 @default.
- W2897032145 hasConceptScore W2897032145C2777931997 @default.
- W2897032145 hasConceptScore W2897032145C2778227246 @default.
- W2897032145 hasConceptScore W2897032145C2778880634 @default.
- W2897032145 hasConceptScore W2897032145C41008148 @default.
- W2897032145 hasConceptScore W2897032145C41895202 @default.
- W2897032145 hasConceptScore W2897032145C502942594 @default.
- W2897032145 hasConceptScore W2897032145C50644808 @default.
- W2897032145 hasConceptScore W2897032145C52622490 @default.
- W2897032145 hasConceptScore W2897032145C59822182 @default.
- W2897032145 hasConceptScore W2897032145C71924100 @default.
- W2897032145 hasConceptScore W2897032145C75294576 @default.
- W2897032145 hasConceptScore W2897032145C81363708 @default.
- W2897032145 hasConceptScore W2897032145C86803240 @default.
- W2897032145 hasLocation W28970321451 @default.
- W2897032145 hasOpenAccess W2897032145 @default.
- W2897032145 hasPrimaryLocation W28970321451 @default.
- W2897032145 hasRelatedWork W2732542196 @default.
- W2897032145 hasRelatedWork W2760085659 @default.
- W2897032145 hasRelatedWork W2767651786 @default.
- W2897032145 hasRelatedWork W2774181585 @default.
- W2897032145 hasRelatedWork W2774265021 @default.
- W2897032145 hasRelatedWork W2800691917 @default.
- W2897032145 hasRelatedWork W2807839383 @default.
- W2897032145 hasRelatedWork W2940859255 @default.
- W2897032145 hasRelatedWork W3154474343 @default.
- W2897032145 hasRelatedWork W564581980 @default.
- W2897032145 isParatext "false" @default.
- W2897032145 isRetracted "false" @default.
- W2897032145 magId "2897032145" @default.
- W2897032145 workType "book-chapter" @default.