Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897037130> ?p ?o ?g. }
- W2897037130 endingPage "A81" @default.
- W2897037130 startingPage "A81" @default.
- W2897037130 abstract "Context. Gas cooling and other thermal processes in the interstellar medium are intimately related to its chemical evolution. To accurately model chemical processes in large-scale gas-dynamical simulations the usage of existing sophisticated astrochemical networks is presently impossible due to prohibitive computational costs. A viable way to deal with the problem is by the design of reduced chemical networks that satisfactorily reproduce the most important features of the more elaborate networks. Aims. A chemistry and cooling module for the interstellar medium is developed that is realistic for temperatures T ≳ 50 K and for densities up to n ≈ 10 10 m −3 at the limit of non-ionizing and non-dissociating background radiation. The module is incorporated into the multiphysics, adaptive-grid code NIRVANA and aims at improving gas-dynamical simulations by explicitly following non-equilibrium chemistry and gas cooling. Methods. The presented chemical network covers 121 species and 426 reactions. It includes a fully-fledged ionization subnetwork for the ten elements H, D, He, C, N, O, Mg, Ne, Si, and Fe, chemical schemes for the formation and destruction of the important molecular coolants H 2 , H 2 O, CO, and OH, a model for dust-catalytic reactions and cosmic ray effects. Metal line cooling was computed from first principles by solving for the energy level population for each ion. Atomic data was adopted from the latest version of the Chianti database. The treatment of rotovibrational line cooling from molecules was based on various up-to-date literature sources. Results. The implementation has been validated by performing both equilibrium and non-equilibrium (time-dependent) computations. The equilibrium results overall confirm the temperature dependence of chemical abundances and the gas cooling rate that has been found in similar studies. In particular, the ionization structure in the high-temperature regime, at T ≳ 2 × 10 4 K, excellently agrees with literature results. In the non-equilibrium calculations, the occurrence of ionization lags are prominent and distinguishes the resulting non-equilibrium cooling from equilibrium cooling. In the low-temperature regime, at T ≲ 2 × 10 4 K, the non-equilibrium cooling rate can be enhanced by up to two orders of magnitude compared to the equilibrium value. Conclusions. The NIRVANA chemistry and cooling module has been successfully tested against literature results. The underlying chemical network is best compared to recently developed networks in the limit of no radiation with differences appearing in the treatment of dust, cosmic ray heating, and in the choice of reaction coefficients. The gas cooling experiments indicate that a reduction of the present network size seems possible under certain conditions by skipping the elements N and Mg, which turn out to be less important coolants compared to the conglomerate of C, O, Si, and Fe coolants." @default.
- W2897037130 created "2018-10-26" @default.
- W2897037130 creator A5012263843 @default.
- W2897037130 date "2018-12-01" @default.
- W2897037130 modified "2023-09-23" @default.
- W2897037130 title "A chemistry and cooling module for the NIRVANA code" @default.
- W2897037130 cites W1529464840 @default.
- W2897037130 cites W1529571022 @default.
- W2897037130 cites W1596024901 @default.
- W2897037130 cites W1644349961 @default.
- W2897037130 cites W1659875532 @default.
- W2897037130 cites W1679290039 @default.
- W2897037130 cites W1686674039 @default.
- W2897037130 cites W178099084 @default.
- W2897037130 cites W1963527304 @default.
- W2897037130 cites W1963634717 @default.
- W2897037130 cites W1964163670 @default.
- W2897037130 cites W1967109106 @default.
- W2897037130 cites W1968777879 @default.
- W2897037130 cites W1970369952 @default.
- W2897037130 cites W1971356221 @default.
- W2897037130 cites W1972463919 @default.
- W2897037130 cites W1973618694 @default.
- W2897037130 cites W1974229877 @default.
- W2897037130 cites W1977821297 @default.
- W2897037130 cites W1978168565 @default.
- W2897037130 cites W1978574709 @default.
- W2897037130 cites W1980699708 @default.
- W2897037130 cites W1983144255 @default.
- W2897037130 cites W1984072856 @default.
- W2897037130 cites W1984422607 @default.
- W2897037130 cites W1984661734 @default.
- W2897037130 cites W1986773674 @default.
- W2897037130 cites W1987180496 @default.
- W2897037130 cites W1987262911 @default.
- W2897037130 cites W1987887384 @default.
- W2897037130 cites W1989110414 @default.
- W2897037130 cites W1989158032 @default.
- W2897037130 cites W1992109358 @default.
- W2897037130 cites W1993230081 @default.
- W2897037130 cites W1995294194 @default.
- W2897037130 cites W1995778743 @default.
- W2897037130 cites W1996532379 @default.
- W2897037130 cites W2000614655 @default.
- W2897037130 cites W2000902002 @default.
- W2897037130 cites W2001526405 @default.
- W2897037130 cites W2001560461 @default.
- W2897037130 cites W2001593578 @default.
- W2897037130 cites W2001866435 @default.
- W2897037130 cites W2003347741 @default.
- W2897037130 cites W2003392096 @default.
- W2897037130 cites W2003599294 @default.
- W2897037130 cites W2003682646 @default.
- W2897037130 cites W2005557342 @default.
- W2897037130 cites W2005694532 @default.
- W2897037130 cites W2006058264 @default.
- W2897037130 cites W2007687569 @default.
- W2897037130 cites W2010142730 @default.
- W2897037130 cites W2011367426 @default.
- W2897037130 cites W2016258946 @default.
- W2897037130 cites W2016699494 @default.
- W2897037130 cites W2017061912 @default.
- W2897037130 cites W2017781119 @default.
- W2897037130 cites W2018121839 @default.
- W2897037130 cites W2019520624 @default.
- W2897037130 cites W2020799965 @default.
- W2897037130 cites W2022424597 @default.
- W2897037130 cites W2022872679 @default.
- W2897037130 cites W2022953211 @default.
- W2897037130 cites W2025446806 @default.
- W2897037130 cites W2026544086 @default.
- W2897037130 cites W2026831206 @default.
- W2897037130 cites W2027374034 @default.
- W2897037130 cites W2027928384 @default.
- W2897037130 cites W2029543700 @default.
- W2897037130 cites W2034608771 @default.
- W2897037130 cites W2039241537 @default.
- W2897037130 cites W2039495070 @default.
- W2897037130 cites W2040641932 @default.
- W2897037130 cites W2040884437 @default.
- W2897037130 cites W2040912209 @default.
- W2897037130 cites W2041574484 @default.
- W2897037130 cites W2047075180 @default.
- W2897037130 cites W2047156718 @default.
- W2897037130 cites W2049719638 @default.
- W2897037130 cites W2050995573 @default.
- W2897037130 cites W2052662287 @default.
- W2897037130 cites W2053781585 @default.
- W2897037130 cites W2054450804 @default.
- W2897037130 cites W2054845400 @default.
- W2897037130 cites W2054914927 @default.
- W2897037130 cites W2056199246 @default.
- W2897037130 cites W2056632995 @default.
- W2897037130 cites W2061286359 @default.
- W2897037130 cites W2062151060 @default.
- W2897037130 cites W2063395797 @default.
- W2897037130 cites W2064338650 @default.
- W2897037130 cites W2066738635 @default.