Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897037622> ?p ?o ?g. }
- W2897037622 endingPage "e0204937" @default.
- W2897037622 startingPage "e0204937" @default.
- W2897037622 abstract "Big data trends in biomedical and health research enable large-scale and multi-dimensional aggregation and analysis of heterogeneous data sources, which could ultimately result in preventive, diagnostic and therapeutic benefit. The methodological novelty and computational complexity of big data health research raises novel challenges for ethics review. In this study, we conducted a scoping review of the literature using five databases to identify and map the major challenges of health-related big data for Ethics Review Committees (ERCs) or analogous institutional review boards. A total of 1093 publications were initially identified, 263 of which were included in the final synthesis after abstract and full-text screening performed independently by two researchers. Both a descriptive numerical summary and a thematic analysis were performed on the full-texts of all articles included in the synthesis. Our findings suggest that while big data trends in biomedicine hold the potential for advancing clinical research, improving prevention and optimizing healthcare delivery, yet several epistemic, scientific and normative challenges need careful consideration. These challenges have relevance for both the composition of ERCs and the evaluation criteria that should be employed by ERC members when assessing the methodological and ethical viability of health-related big data studies. Based on this analysis, we provide some preliminary recommendations on how ERCs could adaptively respond to those challenges. This exploration is designed to synthesize useful information for researchers, ERCs and relevant institutional bodies involved in the conduction and/or assessment of health-related big data research." @default.
- W2897037622 created "2018-10-26" @default.
- W2897037622 creator A5016557721 @default.
- W2897037622 creator A5057220026 @default.
- W2897037622 creator A5064567860 @default.
- W2897037622 creator A5083315765 @default.
- W2897037622 creator A5086682967 @default.
- W2897037622 date "2018-10-11" @default.
- W2897037622 modified "2023-10-16" @default.
- W2897037622 title "Considerations for ethics review of big data health research: A scoping review" @default.
- W2897037622 cites W1541250240 @default.
- W2897037622 cites W1576089456 @default.
- W2897037622 cites W1599740911 @default.
- W2897037622 cites W1782262136 @default.
- W2897037622 cites W1864968666 @default.
- W2897037622 cites W1912212842 @default.
- W2897037622 cites W1922396948 @default.
- W2897037622 cites W1968380849 @default.
- W2897037622 cites W1968659469 @default.
- W2897037622 cites W1976886855 @default.
- W2897037622 cites W1979290264 @default.
- W2897037622 cites W2013587666 @default.
- W2897037622 cites W2017481266 @default.
- W2897037622 cites W2019108039 @default.
- W2897037622 cites W2019528768 @default.
- W2897037622 cites W2022969711 @default.
- W2897037622 cites W2028879958 @default.
- W2897037622 cites W2029084939 @default.
- W2897037622 cites W2033609349 @default.
- W2897037622 cites W2035596487 @default.
- W2897037622 cites W2068264290 @default.
- W2897037622 cites W2075950485 @default.
- W2897037622 cites W2076652359 @default.
- W2897037622 cites W2082302018 @default.
- W2897037622 cites W2083384763 @default.
- W2897037622 cites W2084154288 @default.
- W2897037622 cites W2098792649 @default.
- W2897037622 cites W2104846587 @default.
- W2897037622 cites W2105625970 @default.
- W2897037622 cites W2109188661 @default.
- W2897037622 cites W2131307433 @default.
- W2897037622 cites W2138016069 @default.
- W2897037622 cites W2143163481 @default.
- W2897037622 cites W2147194983 @default.
- W2897037622 cites W2148016376 @default.
- W2897037622 cites W2151100926 @default.
- W2897037622 cites W2181462800 @default.
- W2897037622 cites W2204252976 @default.
- W2897037622 cites W2278150558 @default.
- W2897037622 cites W2286261512 @default.
- W2897037622 cites W2316745204 @default.
- W2897037622 cites W2337666899 @default.
- W2897037622 cites W2402500880 @default.
- W2897037622 cites W2412431176 @default.
- W2897037622 cites W2413320545 @default.
- W2897037622 cites W2418538112 @default.
- W2897037622 cites W2471378571 @default.
- W2897037622 cites W2512827249 @default.
- W2897037622 cites W2552863042 @default.
- W2897037622 cites W2553897606 @default.
- W2897037622 cites W2591382767 @default.
- W2897037622 cites W2598912916 @default.
- W2897037622 cites W2757748198 @default.
- W2897037622 cites W2765297087 @default.
- W2897037622 cites W2779295749 @default.
- W2897037622 cites W2781265533 @default.
- W2897037622 cites W2794959125 @default.
- W2897037622 cites W320587423 @default.
- W2897037622 cites W4229819654 @default.
- W2897037622 cites W2770754863 @default.
- W2897037622 doi "https://doi.org/10.1371/journal.pone.0204937" @default.
- W2897037622 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6181558" @default.
- W2897037622 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30308031" @default.
- W2897037622 hasPublicationYear "2018" @default.
- W2897037622 type Work @default.
- W2897037622 sameAs 2897037622 @default.
- W2897037622 citedByCount "150" @default.
- W2897037622 countsByYear W28970376222019 @default.
- W2897037622 countsByYear W28970376222020 @default.
- W2897037622 countsByYear W28970376222021 @default.
- W2897037622 countsByYear W28970376222022 @default.
- W2897037622 countsByYear W28970376222023 @default.
- W2897037622 crossrefType "journal-article" @default.
- W2897037622 hasAuthorship W2897037622A5016557721 @default.
- W2897037622 hasAuthorship W2897037622A5057220026 @default.
- W2897037622 hasAuthorship W2897037622A5064567860 @default.
- W2897037622 hasAuthorship W2897037622A5083315765 @default.
- W2897037622 hasAuthorship W2897037622A5086682967 @default.
- W2897037622 hasBestOaLocation W28970376221 @default.
- W2897037622 hasConcept C124101348 @default.
- W2897037622 hasConcept C127413603 @default.
- W2897037622 hasConcept C144024400 @default.
- W2897037622 hasConcept C15744967 @default.
- W2897037622 hasConcept C158154518 @default.
- W2897037622 hasConcept C17744445 @default.
- W2897037622 hasConcept C190248442 @default.
- W2897037622 hasConcept C199539241 @default.
- W2897037622 hasConcept C2522767166 @default.