Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897038419> ?p ?o ?g. }
- W2897038419 abstract "Bacterial fermentation of carbohydrates from sustainable lignocellulosic biomass into commodity chemicals by the anaerobic bacterium Clostridium acetobutylicum is a promising alternative source to fossil fuel-derived chemicals. Recently, it was demonstrated that xylose is not appreciably fermented in the presence of arabinose, revealing a hierarchy of pentose utilization in this organism (L. Aristilde, I. A. Lewis, J. O. Park, and J. D. Rabinowitz, Appl Environ Microbiol 81:1452-1462, 2015, https://doi.org/10.1128/AEM.03199-14). The goal of the current study is to characterize the transcriptional regulation that occurs and perhaps drives this pentose hierarchy. Carbohydrate consumption rates showed that arabinose, like glucose, actively represses xylose utilization in cultures fermenting xylose. Further, arabinose addition to xylose cultures led to increased acetate-to-butyrate ratios, which indicated a transition of pentose catabolism from the pentose phosphate pathway to the phosphoketolase pathway. Transcriptome sequencing (RNA-Seq) confirmed that arabinose addition to cells actively growing on xylose resulted in increased phosphoketolase (CA_C1343) mRNA levels, providing additional evidence that arabinose induces this metabolic switch. A significant overlap in differentially regulated genes after addition of arabinose or glucose suggested a common regulation mechanism. A putative open reading frame (ORF) encoding a potential catabolite repression phosphocarrier histidine protein (Crh) was identified that likely participates in the observed transcriptional regulation. These results substantiate the claim that arabinose is utilized preferentially over xylose in C. acetobutylicum and suggest that arabinose can activate carbon catabolite repression via Crh. Furthermore, they provide valuable insights into potential mechanisms for altering pentose utilization to modulate fermentation products for chemical production. IMPORTANCE Clostridium acetobutylicum can ferment a wide variety of carbohydrates to the commodity chemicals acetone, butanol, and ethanol. Recent advances in genetic engineering have expanded the chemical production repertoire of C. acetobutylicum using synthetic biology. Due to its natural properties and genetic engineering potential, this organism is a promising candidate for converting biomass-derived feedstocks containing carbohydrate mixtures to commodity chemicals via natural or engineered pathways. Understanding how this organism regulates its metabolism during growth on carbohydrate mixtures is imperative to enable control of synthetic gene circuits in order to optimize chemical production. The work presented here unveils a novel mechanism via transcriptional regulation by a predicted Crh that controls the hierarchy of carbohydrate utilization and is essential for guiding robust genetic engineering strategies for chemical production." @default.
- W2897038419 created "2018-10-26" @default.
- W2897038419 creator A5020657645 @default.
- W2897038419 creator A5021664547 @default.
- W2897038419 creator A5031426388 @default.
- W2897038419 creator A5053086912 @default.
- W2897038419 creator A5078187729 @default.
- W2897038419 creator A5080917322 @default.
- W2897038419 date "2018-10-30" @default.
- W2897038419 modified "2023-10-04" @default.
- W2897038419 title "Arabinose-Induced Catabolite Repression as a Mechanism for Pentose Hierarchy Control in Clostridium acetobutylicum ATCC 824" @default.
- W2897038419 cites W1519440922 @default.
- W2897038419 cites W1605722827 @default.
- W2897038419 cites W1644275172 @default.
- W2897038419 cites W1904095051 @default.
- W2897038419 cites W1965271834 @default.
- W2897038419 cites W1971043543 @default.
- W2897038419 cites W1978686884 @default.
- W2897038419 cites W1979598429 @default.
- W2897038419 cites W1984818534 @default.
- W2897038419 cites W1993188263 @default.
- W2897038419 cites W1996423252 @default.
- W2897038419 cites W2002265556 @default.
- W2897038419 cites W2004583029 @default.
- W2897038419 cites W2017482443 @default.
- W2897038419 cites W2020653268 @default.
- W2897038419 cites W2026161392 @default.
- W2897038419 cites W2031001769 @default.
- W2897038419 cites W2036449301 @default.
- W2897038419 cites W2040048905 @default.
- W2897038419 cites W2043195659 @default.
- W2897038419 cites W2043218103 @default.
- W2897038419 cites W2050730094 @default.
- W2897038419 cites W2055109879 @default.
- W2897038419 cites W2061510626 @default.
- W2897038419 cites W2066697779 @default.
- W2897038419 cites W2067296707 @default.
- W2897038419 cites W2067823939 @default.
- W2897038419 cites W2068040855 @default.
- W2897038419 cites W2084878026 @default.
- W2897038419 cites W2086412709 @default.
- W2897038419 cites W2087004197 @default.
- W2897038419 cites W2097585614 @default.
- W2897038419 cites W2105367401 @default.
- W2897038419 cites W2117760833 @default.
- W2897038419 cites W2121059751 @default.
- W2897038419 cites W2123732476 @default.
- W2897038419 cites W2131271579 @default.
- W2897038419 cites W2141883257 @default.
- W2897038419 cites W2142284828 @default.
- W2897038419 cites W2148503872 @default.
- W2897038419 cites W2152808252 @default.
- W2897038419 cites W2153024398 @default.
- W2897038419 cites W2154462452 @default.
- W2897038419 cites W2154598603 @default.
- W2897038419 cites W2155458806 @default.
- W2897038419 cites W2158205372 @default.
- W2897038419 cites W2166406784 @default.
- W2897038419 cites W2179438025 @default.
- W2897038419 cites W2205597170 @default.
- W2897038419 cites W2209985030 @default.
- W2897038419 cites W2221739655 @default.
- W2897038419 cites W2225634001 @default.
- W2897038419 cites W2235953112 @default.
- W2897038419 cites W2292728340 @default.
- W2897038419 cites W2306464109 @default.
- W2897038419 cites W2394873430 @default.
- W2897038419 cites W2553708007 @default.
- W2897038419 cites W3962135 @default.
- W2897038419 cites W4230096730 @default.
- W2897038419 doi "https://doi.org/10.1128/msystems.00064-18" @default.
- W2897038419 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6199471" @default.
- W2897038419 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30374459" @default.
- W2897038419 hasPublicationYear "2018" @default.
- W2897038419 type Work @default.
- W2897038419 sameAs 2897038419 @default.
- W2897038419 citedByCount "6" @default.
- W2897038419 countsByYear W28970384192020 @default.
- W2897038419 countsByYear W28970384192022 @default.
- W2897038419 countsByYear W28970384192023 @default.
- W2897038419 crossrefType "journal-article" @default.
- W2897038419 hasAuthorship W2897038419A5020657645 @default.
- W2897038419 hasAuthorship W2897038419A5021664547 @default.
- W2897038419 hasAuthorship W2897038419A5031426388 @default.
- W2897038419 hasAuthorship W2897038419A5053086912 @default.
- W2897038419 hasAuthorship W2897038419A5078187729 @default.
- W2897038419 hasAuthorship W2897038419A5080917322 @default.
- W2897038419 hasBestOaLocation W28970384191 @default.
- W2897038419 hasConcept C100544194 @default.
- W2897038419 hasConcept C104317684 @default.
- W2897038419 hasConcept C127413603 @default.
- W2897038419 hasConcept C143065580 @default.
- W2897038419 hasConcept C150903083 @default.
- W2897038419 hasConcept C161790260 @default.
- W2897038419 hasConcept C179720865 @default.
- W2897038419 hasConcept C183696295 @default.
- W2897038419 hasConcept C185592680 @default.
- W2897038419 hasConcept C191908910 @default.
- W2897038419 hasConcept C2776084176 @default.
- W2897038419 hasConcept C2776928978 @default.